Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitchell C. Lock is active.

Publication


Featured researches published by Mitchell C. Lock.


Clinical and Experimental Pharmacology and Physiology | 2013

Regulation of fetal lung development in response to maternal overnutrition.

Mitchell C. Lock; Erin V. McGillick; Sandra Orgeig; I. Caroline McMillen; Janna L. Morrison

With the worldwide obesity epidemic, the proportion of women entering pregnancy overweight or obese has increased significantly in recent years. Babies born to obese women are at an increased risk of respiratory complications at birth and in childhood. In addition to maternal diabetes, there are a number of metabolic changes that the fetus of an overnourished mother experiences in utero that may modulate lung development and represent the mechanisms underlying the increased risk of respiratory complications. Herein we highlight a series of factors associated with the intrauterine environment of an overnourished mother that may impact on fetal lung development and lead to an increased risk of complications at birth or in postnatal life.


Scientific Reports | 2018

Mitochondrial imaging in live or fixed tissues using a luminescent iridium complex

Alexandra Sorvina; Christie A. Bader; Jack R. T. Darby; Mitchell C. Lock; Jia Yin Soo; Ian R D Johnson; Chiara Caporale; Nicolas H. Voelcker; Stefano Stagni; Massimiliano Massi; Janna L. Morrison; Sally E. Plush; Douglas A. Brooks

Mitochondrial morphology is important for the function of this critical organelle and, accordingly, altered mitochondrial structure is exhibited in many pathologies. Imaging of mitochondria can therefore provide important information about disease presence and progression. However, mitochondrial imaging is currently limited by the availability of agents that have the capacity to image mitochondrial morphology in both live and fixed samples. This can be particularly problematic in clinical studies or large, multi-centre cohort studies, where tissue archiving by fixation is often more practical. We previously reported the synthesis of an iridium coordination complex [Ir(ppy)2(MeTzPyPhCN)]+; where ppy is a cyclometalated 2-phenylpyridine and TzPyPhCN is the 5-(5-(4-cyanophen-1-yl)pyrid-2-yl)tetrazolate ligand; and showed that this complex (herein referred to as IraZolve-Mito) has a high specificity for mitochondria in live cells. Here we demonstrate that IraZolve-Mito can also effectively stain mitochondria in both live and fixed tissue samples. The staining protocol proposed is versatile, providing a universal procedure for cell biologists and pathologists to visualise mitochondria.


Journal of Histochemistry and Cytochemistry | 2015

Mature Surfactant Protein-B Expression by Immunohistochemistry as a Marker for Surfactant System Development in the Fetal Sheep Lung

Mitchell C. Lock; Erin V. McGillick; Sandra Orgeig; Song Zhang; I. Caroline McMillen; Janna L. Morrison

Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung’s ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro–SP-B and pro–SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry.


The Journal of Physiology | 2017

Differential effects of late gestation maternal overnutrition on the regulation of surfactant maturation in fetal and postnatal life

Mitchell C. Lock; Erin V. McGillick; Sandra Orgeig; I. Caroline McMillen; Beverly S. Muhlhausler; Song Zhang; Janna L. Morrison

Offspring of overweight and obese women are at greater risk for respiratory complications at birth. We determined the effect of late gestation maternal overnutrition (LGON) in sheep on surfactant maturation, glucose transport and fatty acid metabolism in the lung in fetal and postnatal life. There were significant decreases in surfactant components and numerical density of surfactant producing cells in the alveolar epithelium due to LGON in the fetal lung. However, there were no differences in the levels of these surfactant components between control and LGON lambs at 30 days of age. The reduced capacity for surfactant production in fetuses as a result of LGON may affect the transition to air breathing at birth. There was altered glucose transport and fatty acid metabolism in the lung as a result of LGON in postnatal life. However, there is a normalisation of surfactant components that suggests accelerated maturation in the lungs after birth.


Journal of Cardiovascular Magnetic Resonance | 2017

Feasibility of detecting myocardial infarction in the sheep fetus using late gadolinium enhancement CMR imaging

An Qi Duan; Mitchell C. Lock; Sunthara Rajan Perumal; Jack R. T. Darby; Jia Yin Soo; Joseph B. Selvanayagam; Christopher K. Macgowan; Mike Seed; Janna L. Morrison

BackgroundLate gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging has enabled the accurate assessment of myocardial infarction (MI). However, LGE CMR has not been performed successfully in the fetus, where it could be useful for animal studies of interventions to promote cardiac regeneration. We believe that LGE imaging could allow us to document the presence, extent and effect of MI in utero and would thereby expand our capacity for conducting fetal sheep MI research. We therefore aimed to investigate the feasibility of using LGE to detect MI in sheep fetuses.MethodsSix sheep fetuses underwent a thoracotomy and ligation of a left anterior descending (LAD) coronary artery branch; while two fetuses underwent a sham surgery. LGE CMR was performed in a subset of fetuses immediately after the surgery and three days later. Early gadolinium enhancement (EGE) CMR was also performed in a subset of fetuses on both days. Cine imaging of the heart was performed to measure ventricular function.ResultsThe imaging performed immediately after LAD ligation revealed no evidence of infarct on LGE (n=3). Two of four infarcted fetuses (50%) showed hypoenhancement at the infarct site on the EGE images. Three days after the ligation, LGE images revealed a clear, hyper-enhanced infarct zone in four of the five infarcted fetuses (80%). No hyper-enhanced infarct zone was seen on the one sham fetus that underwent LGE CMR. No hypoenhancement could be seen in the EGE images in either the sham (n=1) or the infarcted fetus (n=1). No regional wall motion abnormalities were apparent in two of the five infarcted fetuses.ConclusionLGE CMR detected the MI three days after LAD ligation, but not immediately after. Using available methods, EGE imaging was less useful for detecting deficits in perfusion. Our study provides evidence for the ability of a non-invasive tool to monitor the progression of cardiac repair and damage in fetuses with MI. However, further investigation into the optimal timing of LGE and EGE scans and improvement of the sequences should be pursued with the aim of expanding our capacity to monitor cardiac regeneration after MI in fetal sheep.


Journal of Biophotonics | 2018

Label‐free imaging of healthy and infarcted fetal sheep hearts by two‐photon microscopy

Alexandra Sorvina; Christie A. Bader; Mitchell C. Lock; Douglas A. Brooks; Janna L. Morrison; Sally E. Plush

Coronary heart disease is one of the largest causes of death worldwide, making this a significant health care issue. A critical problem for the adult human heart is that it does not undergo effective repair in response to damage, leaving patients with a poor prognosis. Unlike the adult, fetal hearts have the ability to repair after myocardial damage. Using two-photon microscopy, we have visualised the morphological and metabolic changes following myocardial infarction in sheep fetuses, to characterise response to cardiac injury in a mammalian model. Following myocardial infarction, fetal hearts showed no significant increase in collagen deposition in the region of the infarction, when compared to either the surrounding tissue or shams. In contrast, metabolic activity (i. e. NAD(P)H and FAD) was significantly reduced in the region of myocardial infarction, when compared to either the surrounding tissue or sham hearts. For comparison, we also imaged two hearts from preadolescent sheep (sham and myocardial infarction) and showed highly ordered collagen deposition with decreased metabolic activity within the infarcted area. Therefore, two-photon imaging had the capacity to image both morphological and metabolic changes in response to myocardial infarction and showed differences in the response with age. Picture: Two-photon imaging of myocardial infarction (b and d) enabled the visualisation of increased collagen (blue; Em=431 nm) and changes in other tissue autofluorescence (green; Em=489-606 nm) in fetal (a and b) and preadolescent (c and d) hearts, compared to shams (a and c). The excitation wavelength was 840 nm. Scale bars: 10 μm.


The Journal of Physiology | 2018

The role of miRNA regulation in fetal cardiomyocytes, cardiac maturation and the risk of heart disease in adults

Mitchell C. Lock; Ross L. Tellam; Kimberley J. Botting; Kimberley Wang; Joseph B. Selvanayagam; Doug A. Brooks; Mike Seed; Janna L. Morrison

Myocardial infarction is a primary contributor towards the global burden of cardiovascular disease. Rather than repairing the existing damage of myocardial infarction, current treatments only address the symptoms of the disease and reducing the risk of a secondary infarction. Cardiac regenerative capacity is dependent on cardiomyocyte proliferation, which concludes soon after birth in humans and precocial species such as sheep. Human fetal cardiac tissue has some ability to repair following tissue damage, whereas a fully matured human heart has minimal capacity for cellular regeneration. This is in contrast to neonatal mice and adult zebrafish hearts, which retain the ability to undergo cardiomyocyte proliferation and can regenerate cardiac tissue after birth. In mice and zebrafish models, microRNAs (miRNAs) have been implicated in the regulation of genes involved in cardiac cell cycle progression and regeneration. However, the significance of miRNA regulation in cardiomyocyte proliferation for humans and other large mammals, where the timing of heart development in relation to birth is similar, remains unclear. miRNAs may be valuable targets for therapies that promote cardiac repair after injury. Therefore, elucidating the role of specific miRNAs in large animals, where heart development closely resembles that of humans, remains vitally important for identifying therapeutic targets that may be translated into clinical practice focused on tissue repair.


Journal of Biophotonics | 2018

Label-free imaging of redox status and collagen deposition showing metabolic differences in the heart

Janna L. Morrison; Alexandra Sorvina; Jack R. T. Darby; Christie A. Bader; Mitchell C. Lock; Mike Seed; Tim Kuchel; Sally E. Plush; Douglas A. Brooks

The heart has high metabolic demand to maintain function. The primary source of energy supply to support correct contractile muscle function differs between a fetus and an adult. In fetal life, ATP is primarily generated by glycolysis and lactate oxidation, whereas following birth, there is a shift towards a reliance on mitochondrial metabolism and fatty acid oxidation. This change in metabolic status is an adaptation to different fuel availability, oxygenation and growth patterns. In this study, we have employed 2-photon excitation fluorescence microscopy to define the relationship between two critical metabolic cofactors nicotinamide adenine dinucleotide(P)H and flavin adenine dinucleotide, effectively utilizing a redox ratio to differentiate between the metabolic status in fetal (proliferative) and adult (quiescent/hypertrophic) hearts. Two-photon imaging was also used to visually confirm the known increase in collagen deposition in the adult heart. The changes observed were consistent with a hypertrophic growth profile and greater availability of fatty acids in the adult heart, compared to the proliferative fetal heart. Two-photon excitation fluorescence microscopy is therefore a convenient imaging technology that enables the monitoring of striated muscle architecture and the metabolic status of heart tissue. This imaging technology can potentially be employed to visualize cardiac and other muscle pathologies.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2018

Improving pregnancy outcomes in humans through studies in sheep

Janna L. Morrison; Mary J. Berry; Kimberley J. Botting; Jack R. T. Darby; Martin G. Frasch; Kathryn L. Gatford; Dino A. Giussani; Clint Gray; Richard Harding; Emilio A. Herrera; Matthew W. Kemp; Mitchell C. Lock; I. Caroline McMillen; Timothy J. M. Moss; Gabrielle C. Musk; Mark Oliver; Timothy R. H. Regnault; Claire T. Roberts; Jia Yin Soo; Ross L. Tellam

Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2017

Feasibility of phase-contrast cine magnetic resonance imaging for measuring blood flow in the sheep fetus

An Qi Duan; Jack R. T. Darby; Jia Yin Soo; Mitchell C. Lock; Meng Yuan Zhu; Lucy V. Flynn; Sunthara Rajan Perumal; Christopher K. Macgowan; Joseph B. Selvanayagam; Janna L. Morrison; Mike Seed

Phase-contrast cine MRI (PC-MRI) is the gold-standard non-invasive technique for measuring vessel blood flow and has previously been applied in the human fetal circulation. We aimed to assess the feasibility of using PC-MRI to define the distribution of the fetal circulation in sheep. Fetuses were catheterized at 119-120 days gestation (term, 150 days) and underwent MRI at 123 days gestation under isoflurane anesthesia, ventilated at a FiO2 of 1.0. PC-MRI was performed using a fetal arterial blood pressure catheter signal for cardiac triggering. Blood flows were measured in the major fetal vessels, including the main pulmonary artery, ascending and descending aorta, superior vena cava, ductus arteriosus, left and right pulmonary arteries, umbilical vein, ductus venosus, and common carotid artery; and were indexed to estimated fetal weight. The combined ventricular output, pulmonary blood flow and flow across the foramen ovale were calculated from vessel flows. Intra-observer, inter-observer agreement and reproducibility were assessed. Blood flow measurements were successfully obtained in 61 out of 74 vessels (82.4%) interrogated in 9 fetuses. There was good intra-observer (R=0.998, P<0.0001; ICC=0.997) and inter-observer agreement (R=0.996, P<0.0001; ICC=0.996). Repeated MRI measurements showed good reproducibility (R=0.989, P=0.0002; ICC=0.990). We conclude that PC-MRI using fetal catheters for gating triggers is feasible in the major vessels of late gestation fetal sheep. This approach may provide a useful new tool for assessing the circulatory characteristics of fetal sheep models of human disease, including fetal growth restriction and congenital heart disease.

Collaboration


Dive into the Mitchell C. Lock's collaboration.

Top Co-Authors

Avatar

Janna L. Morrison

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Jack R. T. Darby

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Jia Yin Soo

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Doug A. Brooks

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Ross L. Tellam

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Mike Seed

University of Toronto

View shared research outputs
Top Co-Authors

Avatar

Alexandra Sorvina

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Christie A. Bader

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Douglas A. Brooks

University of South Australia

View shared research outputs
Top Co-Authors

Avatar

Erin V. McGillick

University of South Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge