Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitchell D. Knutson is active.

Publication


Featured researches published by Mitchell D. Knutson.


Nature Genetics | 2009

BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism

Billy Andriopoulos; Elena Corradini; Yin Xia; Sarah A. Faasse; Shanzhuo Chen; Lovorka Grgurevic; Mitchell D. Knutson; Antonello Pietrangelo; Slobodan Vukicevic; Herbert Y. Lin

Juvenile hemochromatosis is an iron-overload disorder caused by mutations in the genes encoding the major iron regulatory hormone hepcidin (HAMP) and hemojuvelin (HFE2). We have previously shown that hemojuvelin is a co-receptor for bone morphogenetic proteins (BMPs) and that BMP signals regulate hepcidin expression and iron metabolism. However, the endogenous BMP regulator(s) of hepcidin in vivo is unknown. Here we show that compared with soluble hemojuvelin (HJV.Fc), the homologous DRAGON.Fc is a more potent inhibitor of BMP2 or BMP4 but a less potent inhibitor of BMP6 in vitro. In vivo, HJV.Fc or a neutralizing antibody to BMP6 inhibits hepcidin expression and increases serum iron, whereas DRAGON.Fc has no effect. Notably, Bmp6-null mice have a phenotype resembling hereditary hemochromatosis, with reduced hepcidin expression and tissue iron overload. Finally, we demonstrate a physical interaction between HJV.Fc and BMP6, and we show that BMP6 increases hepcidin expression and reduces serum iron in mice. These data support a key role for BMP6 as a ligand for hemojuvelin and an endogenous regulator of hepcidin expression and iron metabolism in vivo.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells.

Fikret Aydemir; Hyeyoung Nam; Mitchell D. Knutson; Robert J. Cousins

Zip14 is a member of the SLC39A zinc transporter family, which is involved in zinc uptake by cells. Up-regulation of Zip14 by IL-6 appears to contribute to the hepatic zinc accumulation and hypozincemia of inflammation. At least three members of the SLC39A family transport other trace elements, such as iron and manganese, in addition to zinc. We analyzed the capability of Zip14 to mediate non-transferrin-bound iron (NTBI) uptake by overexpressing mouse Zip14 in HEK 293H cells and Sf9 insect cells. Zip14 was found to localize to the plasma membrane, and its overexpression increased the uptake of both 65Zn and 59Fe. Addition of bathophenanthroline sulfonate, a cell-impermeant ferrous iron chelator, inhibited Zip14-mediated iron uptake from ferric citrate, suggesting that iron is taken up by HEK cells as Fe2+. Iron uptake by HEK and Sf9 cells expressing Zip14 was inhibited by zinc. Suppression of endogenous Zip14 expression by using Zip14 siRNA reduced the uptake of both iron and zinc by AML12 mouse hepatocytes. Zip14 siRNA treatment also decreased metallothionein mRNA levels, suggesting that compensatory mechanisms were not sufficient to restore intracellular zinc. Collectively, these results indicate that Zip14 can mediate the uptake of zinc and NTBI into cells and that it may play a role in zinc and iron metabolism in hepatocytes, where this transporter is abundantly expressed. Because NTBI is commonly found in plasma of patients with hemochromatosis and transfusional iron overload, Zip14-mediated NTBI uptake may contribute to the hepatic iron loading that characterizes these diseases.


Critical Reviews in Biochemistry and Molecular Biology | 2003

Iron metabolism in the reticuloendothelial system.

Mitchell D. Knutson; Marianne Wessling-Resnick

Comprised mainly of monocytes and tissue macrophages, the reticuloendothelial system (RES) plays two major roles in iron metabolism: it recycles iron from senescent red blood cells and it serves as a large storage depot for excess iron. Although iron recycling by the RES represents the largest pathway of iron efflux in the body, the precise mechanisms involved have remained elusive. However, studies characterizing the function and regulation of Nramp1, DMT1, HFE, FPN1, CD163, and hepcidin are rapidly expanding our knowledge of the molecular aspects of RE iron handling. This review summarizes fundamental physiological and biochemical aspects of iron metabolism in the RES and focuses on how recent studies have advanced our understanding of these areas. Also discussed are novel insights into the molecular mechanisms contributing to the abnormal RE iron metabolism characteristic of hereditary hemochromatosis and the anemia of chronic disease.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Iron deficiency and iron excess damage mitochondria and mitochondrial DNA in rats

Patrick B. Walter; Mitchell D. Knutson; Andres Paler-Martinez; Sonia Lee; Yu Xu; Fernando E. Viteri; Bruce N. Ames

Approximately two billion people, mainly women and children, are iron deficient. Two studies examined the effects of iron deficiency and supplementation on rats. In study 1, mitochondrial functional parameters and mitochondrial DNA (mtDNA) damage were assayed in iron-deficient (≤5 μg/day) and iron-normal (800 μg/day) rats and in both groups after daily high-iron supplementation (8,000 μg/day) for 34 days. This dose is equivalent to the daily dose commonly given to iron-deficient humans. Iron-deficient rats had lower liver mitochondrial respiratory control ratios and increased levels of oxidants in polymorphonuclear-leukocytes, as assayed by dichlorofluorescein (P < 0.05). Rhodamine 123 fluorescence of polymorphonuclear-leukocytes also increased (P < 0.05). Lowered respiratory control ratios were found in daily high-iron-supplemented rats regardless of the previous iron status (P < 0.05). mtDNA damage was observed in both iron-deficient rats and rats receiving daily high-iron supplementation, compared with iron-normal rats (P < 0.05). Study 2 compared iron-deficient rats given high doses of iron (8,000 μg) either daily or every third day and found that rats given iron supplements every third day had less mtDNA damage on the second and third day after the last dose compared to daily high iron doses. Both inadequate and excessive iron (10 × nutritional need) cause significant mitochondrial malfunction. Although excess iron has been known to cause oxidative damage, the observation of oxidant-induced damage to mitochondria from iron deficiency has been unrecognized previously. Untreated iron deficiency, as well as excessive-iron supplementation, are deleterious and emphasize the importance of maintaining optimal iron intake.


Nutrition Reviews | 2010

Metabolic crossroads of iron and copper

James F. Collins; Joseph R. Prohaska; Mitchell D. Knutson

Interactions between the essential dietary metals, iron and copper, have been known for many years. This review highlights recent advances in iron-copper interactions with a focus on tissues and cell types important for regulating whole-body iron and copper homeostasis. Cells that mediate dietary assimilation (enterocytes) and storage and distribution (hepatocytes) of iron and copper are considered, along with the principal users (erythroid cells) and recyclers of red cell iron (reticuloendothelial macrophages). Interactions between iron and copper in the brain are also discussed. Many unanswered questions regarding the role of these metals and their interactions in health and disease emerge from this synopsis, highlighting extensive future research opportunities.


Journal of Biological Chemistry | 2012

ZIP8 Is an Iron and Zinc Transporter Whose Cell-surface Expression Is Up-regulated by Cellular Iron Loading

Chia-Yu Wang; Supak Jenkitkasemwong; Stephanie Duarte; Brian K. Sparkman; Ali Shawki; Bryan Mackenzie; Mitchell D. Knutson

Background: Previous studies have identified the transmembrane protein ZIP8 (ZRT/IRT-like protein 8) as a zinc transporter. Results: ZIP8 can transport iron in addition to zinc and is up-regulated by iron loading. Conclusion: ZIP8 represents the third mammalian transmembrane iron import protein to be identified. Significance: ZIP8 may play a role in iron metabolism. ZIP8 (SLC39A8) belongs to the ZIP family of metal-ion transporters. Among the ZIP proteins, ZIP8 is most closely related to ZIP14, which can transport iron, zinc, manganese, and cadmium. Here we investigated the iron transport ability of ZIP8, its subcellular localization, pH dependence, and regulation by iron. Transfection of HEK 293T cells with ZIP8 cDNA enhanced the uptake of 59Fe and 65Zn by 200 and 40%, respectively, compared with controls. Excess iron inhibited the uptake of zinc and vice versa. In RNA-injected Xenopus oocytes, ZIP8-mediated 55Fe2+ transport was saturable (K0.5 of ∼0.7 μm) and inhibited by zinc. ZIP8 also mediated the uptake of 109Cd2+, 57Co2+, 65Zn2+ > 54Mn2+, but not 64Cu (I or II). By using immunofluorescence analysis, we found that ZIP8 expressed in HEK 293T cells localized to the plasma membrane and partially in early endosomes. Iron loading increased total and cell-surface levels of ZIP8 in H4IIE rat hepatoma cells. We also determined by using site-directed mutagenesis that asparagine residues 40, 88, and 96 of rat ZIP8 are glycosylated and that N-glycosylation is not required for iron or zinc transport. Analysis of 20 different human tissues revealed abundant ZIP8 expression in lung and placenta and showed that its expression profile differs markedly from ZIP14, suggesting nonredundant functions. Suppression of endogenous ZIP8 expression in BeWo cells, a placental cell line, reduced iron uptake by ∼40%, suggesting that ZIP8 participates in placental iron transport. Collectively, these data identify ZIP8 as an iron transport protein that may function in iron metabolism.


Nutrition Reviews | 2008

Resveratrol and novel potent activators of SIRT1: effects on aging and age-related diseases

Mitchell D. Knutson; Christiaan Leeuwenburgh

Studies show that the plant polyphenol resveratrol can extend the life span of yeast, worms, flies, and fish. It also mitigates the metabolic dysfunction of mice fed high-fat diets. Resveratrol appears to mediate these effects partly by activating SIRT1, a deacetylase enzyme that regulates the activity of several transcriptional factors and enzymes responsive to nutrient availability. However, few foods contain resveratrol and humans metabolize it extensively, resulting in very low systemic bioavailability. Substantial research effort now focuses on identifying and testing more bioavailable and potent activators of SIRT1 for use as pharmacologic interventions in aging and age-related disorders.


American Journal of Physiology-cell Physiology | 2011

Zip14 is a complex broad-scope metal-ion transporter whose functional properties support roles in the cellular uptake of zinc and nontransferrin-bound iron

Jorge J. Pinilla-Tenas; Brian K. Sparkman; Ali Shawki; Anthony C Illing; Colin J. Mitchell; Ningning Zhao; Robert J. Cousins; Mitchell D. Knutson; Bryan Mackenzie

Recent studies have shown that overexpression of the transmembrane protein Zrt- and Irt-like protein 14 (Zip14) stimulates the cellular uptake of zinc and nontransferrin-bound iron (NTBI). Here, we directly tested the hypothesis that Zip14 transports free zinc, iron, and other metal ions by using the Xenopus laevis oocyte heterologous expression system, and use of this approach also allowed us to characterize the functional properties of Zip14. Expression of mouse Zip14 in RNA-injected oocytes stimulated the uptake of (55)Fe in the presence of l-ascorbate but not nitrilotriacetic acid, indicating that Zip14 is an iron transporter specific for ferrous ion (Fe(2+)) over ferric ion (Fe(3+)). Zip14-mediated (55)Fe(2+) uptake was saturable (K(0.5) ≈ 2 μM), temperature-dependent (apparent activation energy, E(a) = 15 kcal/mol), pH-sensitive, Ca(2+)-dependent, and inhibited by Co(2+), Mn(2+), and Zn(2+). HCO(3)(-) stimulated (55)Fe(2+) transport. These properties are in close agreement with those of NTBI uptake in the perfused rat liver and in isolated hepatocytes reported in the literature. Zip14 also mediated the uptake of (109)Cd(2+), (54)Mn(2+), and (65)Zn(2+) but not (64)Cu (I or II). (65)Zn(2+) uptake also was saturable (K(0.5) ≈ 2 μM) but, notably, the metal-ion inhibition profile and Ca(2+) dependence of Zn(2+) transport differed from those of Fe(2+) transport, and we propose a model to account for these observations. Our data reveal that Zip14 is a complex, broad-scope metal-ion transporter. Whereas zinc appears to be a preferred substrate under normal conditions, we found that Zip14 is capable of mediating cellular uptake of NTBI characteristic of iron-overload conditions.


Infection and Immunity | 2006

The Iron Efflux Protein Ferroportin Regulates the Intracellular Growth of Salmonella enterica

Sabine Chlosta; Douglas S. Fishman; Lynne Harrington; Erin E. Johnson; Mitchell D. Knutson; Marianne Wessling-Resnick; Bobby J. Cherayil

ABSTRACT We investigated the influence of the macrophage iron exporter ferroportin and its ligand hepcidin on intracellular Salmonella growth. Elevated ferroportin expression inhibited bacterial multiplication; hepcidin-induced ferroportin down-regulation enhanced it. Expression analysis of iron-responsive Salmonella genes indicated ferroportin-mediated iron deprivation. These results demonstrate a role for ferroportin in antimicrobial resistance.


Biometals | 2012

Physiologic implications of metal-ion transport by ZIP14 and ZIP8

Supak Jenkitkasemwong; Chia-Yu Wang; Bryan Mackenzie; Mitchell D. Knutson

Zinc, iron, and manganese are essential trace elements that serve as catalytic or structural components of larger molecules that are indispensable for life. The three metal ions possess similar chemical properties and have been shown to compete for uptake in a variety of tissues, suggesting that they share common transport proteins. Two likely candidates are the recently identified transmembrane proteins ZIP14 and ZIP8, which have been shown to mediate the cellular uptake of a number of divalent metal ions including zinc, iron, manganese, and cadmium. Although knockout and transgenic mouse models are beginning to define the physiologic roles of ZIP14 and ZIP8 in the handling of zinc and cadmium, their roles in the metabolism of iron and manganese remain to be defined. Here we review similarities and differences in ZIP14 and ZIP8 in terms of structure, metal transport, tissue distribution, subcellular localization, and regulation. We also discuss potential roles of these proteins in the metabolism of zinc, iron, manganese, and cadmium as well as recent associations with human diseases.

Collaboration


Dive into the Mitchell D. Knutson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan Mackenzie

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinze Xu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge