Mitchell Lyle
Texas A&M University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mitchell Lyle.
Nature | 2004
Ana Christina Ravelo; Dyke Andreasen; Mitchell Lyle; Annette Olivarez Lyle; Michael W. Wara
The Earths climate has undergone a global transition over the past four million years, from warm conditions with global surface temperatures about 3 °C warmer than today, smaller ice sheets and higher sea levels to the current cooler conditions. Tectonic changes and their influence on ocean heat transport have been suggested as forcing factors for that transition, including the onset of significant Northern Hemisphere glaciation ∼2.75 million years ago, but the ultimate causes for the climatic changes are still under debate. Here we compare climate records from high latitudes, subtropical regions and the tropics, indicating that the onset of large glacial/interglacial cycles did not coincide with a specific climate reorganization event at lower latitudes. The regional differences in the timing of cooling imply that global cooling was a gradual process, rather than the response to a single threshold or episodic event as previously suggested. We also find that high-latitude climate sensitivity to variations in solar heating increased gradually, culminating after cool tropical and subtropical upwelling conditions were established two million years ago. Our results suggest that mean low-latitude climate conditions can significantly influence global climate feedbacks.
Earth and Planetary Science Letters | 1978
John B. Corliss; Mitchell Lyle; Jack Dymond; Kathy Crane
Abstract Samples dredged from the sediment mounds have a unique chemistry and mineralogy which reveals details of the hydrothermal processes that produce these deposits. The mounds form primarily by deposition of Fe, Mn and Si from hydrothermal fluids which circulate through the basalt crust and the overlying sediments. The Mn, Fe and Si are strongly fractionated in the process; the Fe and Si precipitate within the mounds under slightly reducing conditions as nontronite, while the Mn is deposited as Mn oxyhydroxides at the seawater-sediment interface. The nontronite is exceptionally well crystallized, and contains less than 200 ppm Al. The Mn minerals, todorokite and birnessite, also have exceptional crystallinity and the distribution of trace elements Cu, Ni, Zn, Co, Ca and Ba in these phases agrees with predictions made on the basis of models of their crystal structure. The environment of deposition which produces this suite of minerals — slow percolation of hydrothermal fluids through pelagic sediments — may not be unique to the Galapagos Rift, as the same suite of minerals has been found in similar setting in the Gulf of Aden and on the Mid-Atlantic Ridge.
Geochimica et Cosmochimica Acta | 1984
Jack Dymond; Mitchell Lyle; Bruce Finney; David Z. Piper; Kim Murphy; Roberta Conard; Nicklas G. Pisias
Abstract The chemical composition of ferromanganese nodules from the three nodule-bearing MANOP sites in the Pacific can be accounted for in a qualitative way by variable contributions of distinct accretionary processes. These accretionary modes are: 1. (1) hydrogenous, i.e., direct precipitation or accumulation of colloidal metal oxides in seawater, 2. (2) oxic diagenesis which refers to a variety of ferromanganese accretion processes occurring in oxic sediments; and 3. (3) suboxic diagenesis which results from reduction of Mn+4 by oxidation of organic matter in the sediments. Geochemical evidence suggests processes (1) and (2) occur at all three MANOP nodule-bearing sites, and process (3) occurs only at the hemipelagic site, H, which underlies the relatively productive waters of the eastern tropical Pacific. A normative model quantitatively accounts for the variability observed in nearly all elements. Zn and Na, however, are not well explained by the three end-member model, and we suggest that an additional accretionary process results in greater variability in the abundances of these elements. Variable contributions from the three accretionary processes result in distinct top-bottom compositional differences at the three sites. Nodule tops from H are enriched in Ni, Cu, and Zn, instead of the more typical enrichments of these elements in nodule bottoms. In addition, elemental correlations typical of most pelagic nodules are reversed at site H. The three accretionary processes result in distinct mineralogies. Hydrogenous precipitation produces δMnO2. Oxic diagenesis, however, produces Cu-Ni-rich todorokite, and suboxic diagenesis results in an unstable todorokite which transforms to a 7 A phase (“birnessite”) upon dehydration. The presence of Cu and Ni as charge-balancing cations influence the stability of the todorokite structure. In the bottoms of H nodules, which accrete dominantly by suboxic diagenesis, Na+ and possibly Mn+2 provide much of the charge balance for the todorokite structure. Limited growth rate data for H nodules suggest suboxic accretion is the fastest of the three processes, with rates at least 200 mm/106 yr. Oxic accretion is probably 10 times slower and hydrogenous 100 times slower. Since these rates predict more suboxic component in bulk nodules than is calculated by the normative analysis, we propose that suboxic accretion is a non-steady-state process. Variations in surface water productivity cause pulses of particulate flux to the sea floor which result in transient Mn reduction in the surface sediments and reprecipitation on nodule surfaces.
Paleoceanography | 2003
John A. Barron; Linda E. Heusser; Timothy D. Herbert; Mitchell Lyle
Holocene and latest Pleistocene oceanographic conditions and the coastal climate of northern California have varied greatly, based upon high-resolution studies (ca. every 100 years) of diatoms, alkenones, pollen, CaCO 3 %,and total organic carbon at Ocean Drilling Program (ODP) Site 1019 (41.682°N, 124.930°W, 980 m water depth). Marine climate proxies (alkenone sea surface temperatures [SSTs] and CaCO 3 %) behaved remarkably like the Greenland Ice Sheet Project (GISP)-2 oxygen isotope record during the Balling-Allerod, Younger Dryas (YD), and early part of the Holocene. During the YD, alkenone SSTs decreased by >3°C below mean Bolling-Allerod and Holocene SSTs. The early Holocene (ca. 11.6 to 8.2 ka) was a time of generally warm conditions and moderate CaCO 3 content (generally >4%). The middle part of the Holocene (ca. 8.2 to 3.2 ka) was marked by alkenone SSTs that were consistently 1-2°C cooler than either the earlier or later parts of the Holocene, by greatly reduced numbers of the gyre-diatom Pseudoeunotia doliolus (<10%), and by a permanent drop in CaCO 3 % to <3%. Starting at ca. 5.2 ka, coastal redwood and alder began a steady rise, arguing for increasing effective moisture and the development of the north coast temperate rain forest. At ca. 3.2 ka, a permanent ca. 1°C increase in alkenone SST and a threefold increase in P. doliolus signaled a warming of fall and winter SSTs. Intensified (higher amplitude and more frequent) cycles of pine pollen alternating with increased alder and redwood pollen are evidence that rapid changes in effective moisture and seasonal temperature (enhanced El Nino-Southern Oscillation [ENSO] cycles) have characterized the Site 1019 record since about 3.5 ka.
Nature | 2012
Heiko Pälike; Mitchell Lyle; Hiroshi Nishi; Isabella Raffi; Andy Ridgwell; Kusali Gamage; Adam Klaus; Gary D Acton; Louise Anderson; Jan Backman; Jack G. Baldauf; Catherine Beltran; Steven M. Bohaty; Paul R. Bown; W.H. Busch; James E T Channell; Cecily O. J. Chun; Margaret Lois Delaney; Pawan Dewangan; Tom Dunkley Jones; Kirsty M. Edgar; Helen F Evans; Peter Fitch; Gavin L. Foster; Nikolaus Gussone; Hitoshi Hasegawa; Ed C. Hathorne; Hiroki Hayashi; Jens O. Herrle; Ann Holbourn
Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0–3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.
Deep-sea Research Part I-oceanographic Research Papers | 1993
Fredrick G. Prahl; R.B. Collier; Jack Dymond; Mitchell Lyle; Margaret A. Sparrow
Abstract Long-chain alkenones derived from prymnesiophyte algae were analysed in 1-year sediment trap time series (September 1987–1988) from three sites along a 630 km offshore transect at ∼42°N in the northeast Pacific Ocean. Biomarker flux monitored at 1000 m water depth was evident throughout the year at all sites and showed a consistent seasonal maximum in late spring which increased in amplitude with distance offshore. The integrated annual biomarker flux was constant along the transect, despite differences in seasonality between sites. Alkenone unsaturation patterns were remarkably uniform throughout the time series, reflecting an algal growth temperature of 10.6 ± 1.1°C. This value corresponds to regional water temterature at the sea-surface in winter. It recurs in seasonal upwelling near the coast and at the depth of the subsurface chlorophyll maximum offshore during seasons of stratification. These biomaker observations, interpreted in view of trap data for total organic (TOC) and inorganic carbon and ancillary hydrographic information, help to clarify seasonal productivity patterns for alkenone-producing prymnesiophytes in the northeast Pacific Ocean. Sediments accumulating with distance offshore along the sampling transect change from suboxic and Mn-reducing at the water-sediment interface to aerobic throughout the depths penetrated by box coring. Comparison of alkenone and TOC accumulation rates in surface (0–1 cm) sediments with corresponding annual fluxes integrated by the trap time series, shows that the fraction of both properties accounted at the seafloor is highest and similar under sub-oxic conditions (∼25%), and declines steeply and disproportionately as aerobic conditions are encountered farther offshore. Only 0.25 and 3.1% of the annual inventory for alkenones and TOC in traps are accountable in surface sediments from the slowest accumulating, most oxidizing site farthest offshore. Despite major loss of biomarker to early diagenesis, surface sediments and trap particles display consistent alkenone unsaturation patterns. Results from this study provide a necessary background for palaeoceanographic reconstruction of the northeast Pacific Ocean from stratigraphic analysis of alkenone abundances, unsaturation patterns and isotopic compositions in sediment cores.
Paleoceanography | 1992
Mitchell Lyle; Rainer Zahn; Frederick G Prahl; Jack Dymond; Robert W. Collier; Nicklas G. Pisias; Erwin Suess
The Multitracers Experiment studied a transect of water column, sediment trap, and sediment data taken across the California Current to develop quantitative methods for hindcasting paleoproductivity. The experiment used three sediment trap moorings located 120 km, 270 km, and 630 km from shore at the Oregon/California border in North America. We report here about the sedimentation and burial of particulate organic carbon (Corg) and CaCO3. In order to observe how the integrated CaCO3 and Corg burial across the transect has changed since the last glacial maximum, we have correlated core from the three sites using time scales constrained by both radiocarbon and oxygen isotopes. By comparing surface sediments to a two-and-a-half year sediment trap record, we have also defined the modern preservation rates for many of the labile sedimentary materials. Our analysis of the Corg data indicates that significant amounts (20–40%) of the total Corg being buried today in surface sediments is terrestrial. At the last glacial maximum, the terrestrial Corg fraction within 300 km of the coast was about twice as large. Such large fluxes of terrestrial Corg obscure the marine Corg record, which can be interpreted as productivity. When we corrected for the terrestrial organic matter, we found that the mass accumulation rate of marine Corg roughly doubled from the glacial maximum to the present. Because preservation rates of organic carbon are high in the high sedimentation rate cores, corrections for degradation are straightforward and we can be confident that organic carbon rain rate (new productivity) also doubled. As confirmation, the highest burial fluxes of other biogenic components (opal and Ba) also occur in the Holocene. Productivity off Oregon has thus increased dramatically since the last glacial maximum. CaCO3 fluxes also changed radically through the deglaciation; however, they are linked not to CaCO3 production but rather to changes in deepwater carbonate chemistry between 18 Ka and now.
Paleoceanography | 1993
David Archer; Mitchell Lyle; K. Rodgers; Philip N. Froelich
Measurements of opal preservation in deep sea sediment cores have been presented in three ways: the opal concentration as a fraction of total dry weight (%opaltot), the opal concentration normalized to calcite-free dry weight (%opalcalcite-free), and me opal accumulation rate (opal MAR). It is tempting to interpret changes in these indices as indicators of rates of biological production in past oceans. Based on theoretical constraints, we argue that in typical tropical and subtropical sediments, both %Opalcalcite-free and opal MAR reflect a significant artifact of dilution by other phases. Thus the band of high %Opalcalcite-free in the equatorial Pacific appears to be caused in large part by the high %Calcite in that region, rather than by high opal productivity. The best candidate for a reliable paleoproductivity proxy appears to be %Opaltot. Unfortunately, present-day %Opaltot data from tropical and subtropical regions show little or no systematic trend with the rain rate of opal. Pore water silica concentration data reveal that the apparent pore water opal solubility is not constant but correlates regionally with the rain rate of opal to the seafloor. A model that treats opal as a single homogeneous phase with a single well-defined solubility product predicts a strong dependence of opal concentration on rain rate (in stark contrast to the data), and a constant asymptotic pore water Si. Two models representing opal as multiple heterogeneous phases with different solubilities are able to reproduce the observed asymptotic pore water Si/rain rate relationship, but not the lack of rain rate trend in the opal concentration data. Only by assuming a systematic trend in the quality of opal (i.e., the solubility) as a function of opal production, can we reproduce the observed pattern of opal preservation. The implication of this study is that changes in opal preservation in the geologic record cannot simply be interpreted in terms of changes in surface ocean productivity until our understanding of opal diagenesis can be improved.
Geology | 2007
Mitchell Lyle; Samantha J. Gibbs; T.C. Moore; David K. Rea
The Antarctic Circumpolar Current (ACC) is a key feature of the Southern Ocean. Its development may have helped cool Antarctica and initiate Southern Hemisphere glaciation. The deep circulation of the ACC must have been established after both the Tasman gateway (between Antarctica and Australia) and the Drake Passage (between South America and Antarctica) opened. However, estimates for ACC initiation range over 20 m.y., from the middle Eocene to early Miocene. A new piston core of upper Oligocene to Holocene sediments from the South Pacific has allowed us to delimit the formation of the ACC to the late Oligocene (ca. 25–23 Ma). Upper Oligocene, current-worked sediments and a hiatus to the upper Miocene result from the beginning of the modern ACC flow; i.e., when strong currents and mixing throughout the water column were established. Previously published Nd isotope data date the first intrusion of Pacific water into the Atlantic much earlier. The discrepancy with our results can be reconciled by the different methods measuring different flow regimes. Tracer methods such as Nd are sensitive to relatively small and shallow incursions of water, whereas pelagic erosional regimes require vigorous deep flow.
Geochimica et Cosmochimica Acta | 1984
Mitchell Lyle; G. Ross Heath; James M Robbins
Sediments from MANOP sites M and H in the eastern tropical Pacific Ocean can be partitioned into operationally defined phases by means of a sequential leach procedure. This paper reports the results of the first leach in the sequence, an acetic acid solution buffered as p H 5 with sodium acetate. This leach is designed to remove carbonate-bound and sorbed cations. The only cation bound in a consistent ratio to calcium in the carbonate is strontium. The molar ratio is 2 × 10−3. In contrast, transition metals are sorbed onto the surfaces of other sedimentary particles. The proportions sorbed range from 2 to 10% of the total manganese, about 10% of the total nickel and copper, and less than 1% of the total iron. The pool of sorbed metals in surface sediments is sufficiently large and the rate of biological stirring is sufficiently rapid for this metal reservoir potentially to dominate the porewater reservoir in supplying metals to ferromanganese nodules. A simple model for nodule growth based upon transfer of metals through this reservoir suggests that only 1% of the sedimentary sorbed metals within a radius of 2 to 9 cm is required to support typical nodule growth rates.