Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miten Jain is active.

Publication


Featured researches published by Miten Jain.


Nature Methods | 2015

Improved data analysis for the MinION nanopore sequencer

Miten Jain; Ian T Fiddes; Karen H. Miga; Hugh E. Olsen; Benedict Paten; Mark Akeson

Speed, single-base sensitivity and long read lengths make nanopores a promising technology for high-throughput sequencing. We evaluated and optimized the performance of the MinION nanopore sequencer using M13 genomic DNA and used expectation maximization to obtain robust maximum-likelihood estimates for insertion, deletion and substitution error rates (4.9%, 7.8% and 5.1%, respectively). Over 99% of high-quality 2D MinION reads mapped to the reference at a mean identity of 85%. We present a single-nucleotide-variant detection tool that uses maximum-likelihood parameter estimates and marginalization over many possible read alignments to achieve precision and recall of up to 99%. By pairing our high-confidence alignment strategy with long MinION reads, we resolved the copy number for a cancer-testis gene family (CT47) within an unresolved region of human chromosome Xq24.


Vaccine | 2011

Cancer vaccines and carbohydrate epitopes.

Jamie Heimburg-Molinaro; Michelle A. Lum; Geraldine V. Vijay; Miten Jain; Adel Almogren; Kate Rittenhouse-Olson

Tumor-associated carbohydrate antigens (TACA) result from the aberrant glycosylation that is seen with transformation to a tumor cell. The carbohydrate antigens that have been found to be tumor-associated include the mucin related Tn, Sialyl Tn, and Thomsen-Friedenreich antigens, the blood group Lewis related Lewis(Y), Sialyl Lewis(X) and Sialyl Lewis(A), and Lewis(X) (also known as stage-specific embryonic antigen-1, SSEA-1), the glycosphingolipids Globo H and stage-specific embryonic antigen-3 (SSEA-3), the sialic acid containing glycosphingolipids, the gangliosides GD2, GD3, GM2, fucosyl GM1, and Neu5GcGM3, and polysialic acid. Recent developments have furthered our understanding of the T-independent type II response that is seen in response to carbohydrate antigens. The selection of a vaccine target antigen is based on not only the presence of the antigen in a variety of tumor tissues but also on the role this antigen plays in tumor growth and metastasis. These roles for TACAs are being elucidated. Newly acquired knowledge in understanding the T-independent immune response and in understanding the key roles that carbohydrates play in metastasis are being applied in attempts to develop an effective vaccine response to TACAs. The role of each of the above mentioned carbohydrate antigens in cancer growth and metastasis and vaccine attempts using these antigens will be described.


Genome Biology | 2016

The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community

Miten Jain; Hugh E. Olsen; Benedict Paten; Mark Akeson

Nanopore DNA strand sequencing has emerged as a competitive, portable technology. Reads exceeding 150 kilobases have been achieved, as have in-field detection and analysis of clinical pathogens. We summarize key technical features of the Oxford Nanopore MinION, the dominant platform currently available. We then discuss pioneering applications executed by the genomics community.


F1000Research | 2015

MinION Analysis and Reference Consortium: Phase 1 data release and analysis

Camilla L. C. Ip; Matthew Loose; John R. Tyson; Mariateresa de Cesare; Bonnie L. Brown; Miten Jain; Richard M. Leggett; David Eccles; Vadim Zalunin; John M. Urban; Paolo Piazza; Rory Bowden; Benedict Paten; Solomon Mwaigwisya; Elizabeth M. Batty; Jared T. Simpson; Terrance P. Snutch; Ewan Birney; David Buck; Sara Goodwin; Hans J. Jansen; Justin O'Grady; Hugh E. Olsen; MinION Analysis

The advent of a miniaturized DNA sequencing device with a high-throughput contextual sequencing capability embodies the next generation of large scale sequencing tools. The MinION™ Access Programme (MAP) was initiated by Oxford Nanopore Technologies™ in April 2014, giving public access to their USB-attached miniature sequencing device. The MinION Analysis and Reference Consortium (MARC) was formed by a subset of MAP participants, with the aim of evaluating and providing standard protocols and reference data to the community. Envisaged as a multi-phased project, this study provides the global community with the Phase 1 data from MARC, where the reproducibility of the performance of the MinION was evaluated at multiple sites. Five laboratories on two continents generated data using a control strain of Escherichia coli K-12, preparing and sequencing samples according to a revised ONT protocol. Here, we provide the details of the protocol used, along with a preliminary analysis of the characteristics of typical runs including the consistency, rate, volume and quality of data produced. Further analysis of the Phase 1 data presented here, and additional experiments in Phase 2 of E. coli from MARC are already underway to identify ways to improve and enhance MinION performance.


Nature Biotechnology | 2018

Nanopore sequencing and assembly of a human genome with ultra-long reads

Miten Jain; Sergey Koren; Karen H. Miga; Josh Quick; Arthur C Rand; Thomas A Sasani; John R. Tyson; Andrew D. Beggs; Alexander Dilthey; Ian T Fiddes; Sunir Malla; Hannah Marriott; Tom Nieto; Justin O'Grady; Hugh E. Olsen; Brent S. Pedersen; Arang Rhie; Hollian Richardson; Aaron R. Quinlan; Terrance P. Snutch; Louise Tee; Benedict Paten; Adam M. Phillippy; Jared T. Simpson; Nicholas J. Loman; Matthew Loose

We report the sequencing and assembly of a reference genome for the human GM12878 Utah/Ceph cell line using the MinION (Oxford Nanopore Technologies) nanopore sequencer. 91.2 Gb of sequence data, representing ∼30× theoretical coverage, were produced. Reference-based alignment enabled detection of large structural variants and epigenetic modifications. De novo assembly of nanopore reads alone yielded a contiguous assembly (NG50 ∼3 Mb). We developed a protocol to generate ultra-long reads (N50 > 100 kb, read lengths up to 882 kb). Incorporating an additional 5× coverage of these ultra-long reads more than doubled the assembly contiguity (NG50 ∼6.4 Mb). The final assembled genome was 2,867 million bases in size, covering 85.8% of the reference. Assembly accuracy, after incorporating complementary short-read sequencing data, exceeded 99.8%. Ultra-long reads enabled assembly and phasing of the 4-Mb major histocompatibility complex (MHC) locus in its entirety, measurement of telomere repeat length, and closure of gaps in the reference human genome assembly GRCh38.


Genome Research | 2014

Centromere reference models for human chromosomes X and Y satellite arrays

Karen H. Miga; Yulia Newton; Miten Jain; Nicolas Altemose; Huntington F. Willard; W. James Kent

The human genome sequence remains incomplete, with multimegabase-sized gaps representing the endogenous centromeres and other heterochromatic regions. Available sequence-based studies within these sites in the genome have demonstrated a role in centromere function and chromosome pairing, necessary to ensure proper chromosome segregation during cell division. A common genomic feature of these regions is the enrichment of long arrays of near-identical tandem repeats, known as satellite DNAs, which offer a limited number of variant sites to differentiate individual repeat copies across millions of bases. This substantial sequence homogeneity challenges available assembly strategies and, as a result, centromeric regions are omitted from ongoing genomic studies. To address this problem, we utilize monomer sequence and ordering information obtained from whole-genome shotgun reads to model two haploid human satellite arrays on chromosomes X and Y, resulting in an initial characterization of 3.83 Mb of centromeric DNA within an individual genome. To further expand the utility of each centromeric reference sequence model, we evaluate sites within the arrays for short-read mappability and chromosome specificity. Because satellite DNAs evolve in a concerted manner, we use these centromeric assemblies to assess the extent of sequence variation among 366 individuals from distinct human populations. We thus identify two satellite array variants in both X and Y centromeres, as determined by array length and sequence composition. This study provides an initial sequence characterization of a regional centromere and establishes a foundation to extend genomic characterization to these sites as well as to other repeat-rich regions within complex genomes.


Nature Methods | 2017

Mapping DNA methylation with high-throughput nanopore sequencing

Arthur C Rand; Miten Jain; Jordan M Eizenga; Audrey Musselman-Brown; Hugh E. Olsen; Mark Akeson; Benedict Paten

DNA chemical modifications regulate genomic function. We present a framework for mapping cytosine and adenosine methylation with the Oxford Nanopore Technologies MinION using this nanopore sequencers ionic current signal. We map three cytosine variants and two adenine variants. The results show that our model is sensitive enough to detect changes in genomic DNA methylation levels as a function of growth phase in Escherichia coli.


Nature Communications | 2017

Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells

Ashley Byrne; Anna E. Beaudin; Hugh E. Olsen; Miten Jain; Charles Cole; Theron Palmer; Rebecca M. DuBois; E. Camilla Forsberg; Mark Akeson; Christopher Vollmers

Understanding gene regulation and function requires a genome-wide method capable of capturing both gene expression levels and isoform diversity at the single-cell level. Short-read RNAseq is limited in its ability to resolve complex isoforms because it fails to sequence full-length cDNA copies of RNA molecules. Here, we investigate whether RNAseq using the long-read single-molecule Oxford Nanopore MinION sequencer is able to identify and quantify complex isoforms without sacrificing accurate gene expression quantification. After benchmarking our approach, we analyse individual murine B1a cells using a custom multiplexing strategy. We identify thousands of unannotated transcription start and end sites, as well as hundreds of alternative splicing events in these B1a cells. We also identify hundreds of genes expressed across B1a cells that display multiple complex isoforms, including several B cell-specific surface receptors. Our results show that we can identify and quantify complex isoforms at the single cell level.


F1000Research | 2017

MinION Analysis and Reference Consortium: Phase 2 data release and analysis of R9.0 chemistry

Miten Jain; John R. Tyson; Matthew Loose; Camilla L. C. Ip; David Eccles; Justin O'Grady; Sunir Malla; Richard M. Leggett; Ola Wallerman; Hans J. Jansen; Vadim Zalunin; Ewan Birney; Bonnie L. Brown; Terrance P. Snutch; Hugh E. Olsen

Background: Long-read sequencing is rapidly evolving and reshaping the suite of opportunities for genomic analysis. For the MinION in particular, as both the platform and chemistry develop, the user community requires reference data to set performance expectations and maximally exploit third-generation sequencing. We performed an analysis of MinION data derived from whole genome sequencing of Escherichia coli K-12 using the R9.0 chemistry, comparing the results with the older R7.3 chemistry. Methods: We computed the error-rate estimates for insertions, deletions, and mismatches in MinION reads. Results: Run-time characteristics of the flow cell and run scripts for R9.0 were similar to those observed for R7.3 chemistry, but with an 8-fold increase in bases per second (from 30 bps in R7.3 and SQK-MAP005 library preparation, to 250 bps in R9.0) processed by individual nanopores, and less drop-off in yield over time. The 2-dimensional (“2D”) N50 read length was unchanged from the prior chemistry. Using the proportion of alignable reads as a measure of base-call accuracy, 99.9% of “pass” template reads from 1-dimensional (“1D”) experiments were mappable and ~97% from 2D experiments. The median identity of reads was ~89% for 1D and ~94% for 2D experiments. The total error rate (miscall + insertion + deletion ) decreased for 2D “pass” reads from 9.1% in R7.3 to 7.5% in R9.0 and for template “pass” reads from 26.7% in R7.3 to 14.5% in R9.0. Conclusions: These Phase 2 MinION experiments serve as a baseline by providing estimates for read quality, throughput, and mappability. The datasets further enable the development of bioinformatic tools tailored to the new R9.0 chemistry and the design of novel biological applications for this technology. Abbreviations: K: thousand, Kb: kilobase (one thousand base pairs), M: million, Mb: megabase (one million base pairs), Gb: gigabase (one billion base pairs).


bioRxiv | 2017

Reading canonical and modified nucleotides in 16S ribosomal RNA using nanopore direct RNA sequencing

Andrew M. Smith; Miten Jain; Logan Mulroney; Daniel R. Garalde; Mark Akeson

The ribosome small subunit is expressed in all living cells. It performs numerous essential functions during translation, including formation of the initiation complex and proofreading of base-pairs between mRNA codons and tRNA anticodons. The core constituent of the small ribosomal subunit is a ∼1.5 kb RNA strand in prokaryotes (16S rRNA) and a homologous ∼1.8 kb RNA strand in eukaryotes (18S rRNA). Traditional sequencing-by-synthesis (SBS) of rRNA genes or rRNA cDNA copies has achieved wide use as a ‘molecular chronometer’ for phylogenetic studies 1, and as a tool for identifying infectious organisms in the clinic 2. However, epigenetic modifications on rRNA are erased by SBS methods. Here we describe direct MinION nanopore sequencing of individual, full-length 16S rRNA absent reverse transcription or amplification. As little as 5 picograms (∼10 attomole) of E. coli 16S rRNA was detected in 4.5 micrograms of total human RNA. Nanopore ionic current traces that deviated from canonical patterns revealed conserved 16S rRNA base modifications, and a 7-methylguanosine modification that confers aminoglycoside resistance to some pathological E. coli strains. This direct RNA sequencing technology has promise for rapid identification of microbes in the environment and in patient samples.

Collaboration


Dive into the Miten Jain's collaboration.

Top Co-Authors

Avatar

Hugh E. Olsen

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark Akeson

University of California

View shared research outputs
Top Co-Authors

Avatar

Benedict Paten

University of California

View shared research outputs
Top Co-Authors

Avatar

Karen H. Miga

University of California

View shared research outputs
Top Co-Authors

Avatar

John R. Tyson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Terrance P. Snutch

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur C Rand

University of California

View shared research outputs
Top Co-Authors

Avatar

Justin O'Grady

University College London

View shared research outputs
Top Co-Authors

Avatar

Matthew Loose

University of Nottingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge