Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuaki Yanagida is active.

Publication


Featured researches published by Mitsuaki Yanagida.


Journal of Biological Chemistry | 2003

Proteomic Analysis of Human Nop56p-associated Pre-ribosomal Ribonucleoprotein Complexes POSSIBLE LINK BETWEEN Nop56p AND THE NUCLEOLAR PROTEIN TREACLE RESPONSIBLE FOR TREACHER COLLINS SYNDROME

Toshiya Hayano; Mitsuaki Yanagida; Yoshio Yamauchi; Takashi Shinkawa; Toshiaki Isobe; Nobuhiro Takahashi

Nop56p is a component of the box C/D small nucleolar ribonucleoprotein complexes that direct 2′-O-methylation of pre-rRNA during its maturation. Genetic analyses in yeast have shown that Nop56p plays important roles in the early steps of pre-rRNA processing. However, its precise function remains elusive, especially in higher eukaryotes. Here we describe the proteomic characterization of human Nop56p (hNop56p)-associated pre-ribosomal ribonucleoprotein complexes. Mass spectrometric analysis of purified pre-ribosomal ribonucleoprotein complexes identified 61 ribosomal proteins, 16 trans-acting factors probably involved in ribosome biogenesis, and 29 proteins whose function in ribosome biogenesis is unknown. Identification of pre-rRNA species within hNop56p-associated pre-ribosomal ribonucleoprotein complexes, coupled with the known functions of yeast orthologs of the probable trans-acting factors identified in human, demonstrated that hNop56p functions in the early to middle stages of 60 S subunit synthesis in human cells. Interestingly, the nucleolar phosphoprotein treacle, which is responsible for the craniofacial disorder associated with Treacher Collins syndrome, was found to be a constituent of hNop56p-associated pre-rRNP complexes. The association of hNop56p and treacle within the complexes was independent of rRNA integrity, indicating a direct interaction. In addition, the protein compositions of the treacle-associated and hNop56p-associated pre-ribosomal ribonucleoprotein complexes were very similar, suggesting functional similarities between these two complexes with respect to ribosome biogenesis in human cells.


Journal of Biological Chemistry | 2008

Multiple Molecular Interactions Implicate the Connectin/Titin N2A Region as a Modulating Scaffold for p94/Calpain 3 Activity in Skeletal Muscle

Chikako Hayashi; Yasuko Ono; Naoko Doi; Fujiko Kitamura; Mai Tagami; Reiko Mineki; Takao Arai; Hayao Taguchi; Mitsuaki Yanagida; Stephanie Hirner; Dietmar Labeit; Siegfried Labeit; Hiroyuki Sorimachi

p94/calpain 3 is a skeletal muscle-specific Ca2+-regulated cysteine protease (calpain), and genetic loss of p94 protease activity causes muscular dystrophy (calpainopathy). In addition, a small in-frame deletion in the N2A region of connectin/titin that impairs p94-connectin interaction causes a severe muscular dystrophy (mdm) in mice. Since p94 via its interaction with the N2A and M-line regions of connectin becomes part of the connectin filament system that serves as a molecular scaffold for the myofibril, it has been proposed that structural and functional integrity of the p94-connectin complex is essential for health and maintenance of myocytes. In this study, we have surveyed the interactions made by p94 and connectin N2A inside COS7 cells. This revealed that p94 binds to connectin at multiple sites, including newly identified loci in the N2A and PEVK regions of connectin. Functionally, p94-N2A interactions suppress p94 autolysis and protected connectin from proteolysis. The connectin N2A region also contains a binding site for the muscle ankyrin repeat proteins (MARPs), a protein family involved in the cellular stress responses. MARP2/Ankrd2 competed with p94 for binding to connectin and was also proteolyzed by p94. Intriguingly, a connectin N2A fragment with the mdm deletion possessed enhanced resistance to proteases, including p94, and its interaction with MARPs was weakened. Our data support a model in which MARP2-p94 signaling converges within the N2A connectin segment and the mdm deletion disrupts their coordination. These results also implicate the dynamic nature of connectin molecule as a regulatory scaffold of p94 functions.


Journal of Chromatography B | 2002

Functional proteomics; current achievements

Mitsuaki Yanagida

This review presents the current improvements in functional proteomic strategies and their research applications. Proteomics has emerged as an indispensable methodology for large-scale and high-throughput protein analyses in the post-genome era. Functional proteomics, the comprehensive analysis of proteins with special attention to their functions, is a powerful and useful approach for investigations in the life and medical sciences. Various methods have been developed for this purpose, expanding the field further. This important technology will not only provide a wealth of information on proteins, but also contribute synergistically to the understanding of life with other systematic technologies such as gene chips.


Molecular Cell | 2008

Glycolytic Enzyme GAPDH Promotes Peroxide Stress Signaling through Multistep Phosphorelay to a MAPK Cascade

Susumu Morigasaki; Koichi Shimada; Aminah Ikner; Mitsuaki Yanagida; Kazuhiro Shiozaki

Phosphorelay signaling of environmental stimuli by two-component systems is prevailing in bacteria and also utilized by fungi and plants. In the fission yeast Schizosaccharomyces pombe, peroxide stress signals are transmitted from the Mak2/3 sensor kinases to the Mpr1 histidine-containing phosphotransfer (HPt) protein and finally to the Mcs4 response regulator, which activates a MAP kinase cascade. Here we show that, unexpectedly, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) physically associates with the Mcs4 response regulator and stress-responsive MAP kinase kinase kinases (MAPKKKs). In response to H2O2 stress, Cys-152 of the Tdh1 GAPDH is transiently oxidized, which enhances the association of Tdh1 with Mcs4. Furthermore, Tdh1 is essential for the interaction between the Mpr1 HPt protein and the Mcs4 response regulator and thus for phosphorelay signaling. These results demonstrate that the glycolytic enzyme GAPDH plays an essential role in the phosphorelay signaling, where its redox-sensitive cysteine residue may provide additional input signals.


Arthritis Research & Therapy | 2009

Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis

Kazuhisa Nozawa; Maki Fujishiro; Mikiko Kawasaki; Hiroshi Kaneko; Kazuhisa Iwabuchi; Mitsuaki Yanagida; Fujihiko Suzuki; Keiji Miyazawa; Yoshinari Takasaki; Hideoki Ogawa; Kenji Takamori; Iwao Sekigawa

IntroductionA protein analysis using a mass spectrometry indicated that there are serum proteins showing significant quantitative changes after the administration of infliximab. Among them, connective tissue growth factor (CTGF) seems to be related to the pathogenesis of rheumatoid arthritis (RA). Therefore, this study was conducted to investigate how CTGF is associated with the disease progression of RA.MethodsSerum samples were collected from RA patients in active or inactive disease stages, and before or after treatments with infliximab. CTGF production was evaluated by ELISA, RT-PCR, indirect immunofluorescence microscopy, and immunoblotting. Osteoclastogenesis was evaluated using tartrate-resistant acid phosphatase (TRAP) staining, a bone resorption assay and osteoclasts specific catalytic enzymes productions.ResultsThe serum concentrations of CTGF in RA were greater than in normal healthy controls and disease controls. Interestingly, those were significantly higher in active RA patients compared to inactive RA patients. Furthermore, the CTGF levels significantly were decreased by infliximab concomitant with the disease amelioration. In addition, tumour necrosis factor (TNF)α can induce the CTGF production from synovial fibroblasts even though TNFα can oppositely inhibit the production of CTGF from chondrocytes. CTGF promoted the induction of the quantitative and qualitative activities of osteoclasts in combination with M-CSF and receptor activator of NF-κB ligand (RANKL). In addition, we newly found integrin αVβ3 on the osteoclasts as a CTGF receptor.ConclusionsThese results indicate that aberrant CTGF production induced by TNFα plays a central role for the abnormal osteoclastic activation in RA patients. Restoration of aberrant CTGF production may contribute to the inhibition of articular destruction in infliximab treatment.


Biochemical Journal | 2008

Association of human DNA helicase RecQ5β with RNA polymerase II and its possible role in transcription

Keiichi Izumikawa; Mitsuaki Yanagida; Toshiya Hayano; Hiroyuki Tachikawa; Wataru Komatsu; Akira Shimamoto; Kazunobu Futami; Yasuhiro Furuichi; Takashi Shinkawa; Yoshio Yamauchi; Toshiaki Isobe; Nobuhiro Takahashi

Although RecQ5beta is a ssDNA (single-stranded DNA)-stimulated ATPase and an ATP-dependent DNA helicase with strand-annealing activities, its cellular function remains to be explored. In the present paper, we used immunopurification and MS-based analyses to show that human DNA helicase RecQ5beta is associated with at least four RNAP II (RNA polymerase II) subunits. RecQ5beta was also present in complexes immunoprecipitated using three different antibodies against the large subunit of RNAP II, or in complexes immunoprecipitated using an anti-FLAG antibody against either FLAG-RNAP II 33 kDa subunit or FLAG-Pin1. Different regions of the non-helicase domain of the RecQ5beta molecule were associated with hypophosphorylated and hyperphosphorylated forms of the RNAP II large subunit independently of DNA and RNA. RecQ5beta was also found in nuclear chromatin fractions and associated with the coding regions of the LDL (low-density lipoprotein) receptor and beta-actin genes. Knockdown of the RecQ5beta transcript increased the transcription of those genes. The results of the present study suggest that RecQ5beta has suppressive roles in events associated with RNAP II-dependent transcription.


Molecular & Cellular Proteomics | 2009

Parvulin (Par14), a Peptidyl-Prolyl cis-trans Isomerase, Is a Novel rRNA Processing Factor That Evolved in the Metazoan Lineage

Sally Fujiyama-Nakamura; Harunori Yoshikawa; Keiichi Homma; Toshiya Hayano; Teruko Tsujimura-Takahashi; Keiichi Izumikawa; Hideaki Ishikawa; Naoki Miyazawa; Mitsuaki Yanagida; Yutaka Miura; Takashi Shinkawa; Yoshio Yamauchi; Toshiaki Isobe; Nobuhiro Takahashi

Although parvulin (Par14/eukaryotic parvulin homolog), a peptidyl-prolyl cis-trans isomerase, is found associated with the preribosomal ribonucleoprotein (pre-rRNP) complexes, its roles in ribosome biogenesis remain undetermined. In this study, we describe a comprehensive proteomics analysis of the Par14-associated pre-rRNP complexes using LC-MS/MS and a knockdown analysis of Par14. Together with our previous results, we finally identified 115 protein components of the complexes, including 39 ribosomal proteins and 54 potential trans-acting factors whose yeast homologs are found in the pre-rRNP complexes formed at various stages of ribosome biogenesis. We give evidence that, although Par14 exists in both the phosphorylated and unphosphorylated forms in the cell, only the latter form is associated with the pre-40 S and pre-60 S ribosomal complexes. We also show that Par14 co-localizes with the nucleolar protein B23 during the interphase and in the spindle apparatus during mitosis and that actinomycin D treatment results in the exclusion of Par14 from the nucleolus. Finally we demonstrate that knockdown of Par14 mRNA decelerates the processing of pre-rRNA to 18 and 28 S rRNAs. We propose that Par14 is a component of the pre-rRNA complexes and functions as an rRNA processing factor in ribosome biogenesis. As the amino acid sequence of Par14 including that in the amino-terminal pre-rRNP binding region is conserved only in metazoan homologs, we suggest that its roles in ribosome biogenesis have evolved in the metazoan lineage.


Biology of Reproduction | 2009

Equatorin: Identification and Characterization of the Epitope of the MN9 Antibody in the Mouse

Kenji Yamatoya; Keiichi Yoshida; Chizuru Ito; Mamiko Maekawa; Mitsuaki Yanagida; Kenji Takamori; Hideoki Ogawa; Yoshihiko Araki; Kenji Miyado; Yoshiro Toyama; Kiyotaka Toshimori

Equatorin (MN9 antigenic molecule) is a widely distributed acrosomal protein in mammalian sperm. During the acrosome reaction, some amount of equatorin translocates to the plasma membrane, covering the equatorial region. From the results of studies of both in vitro and in vivo fertilization inhibition using the MN9 antibody, equatorin has been suggested to be involved in fusion with the oolemma. In the present study, we cloned equatorin and, using mass spectrometry and carbohydrate staining, found it to be a highly glycosylated protein. Equatorin is a sperm-specific type 1 transmembrane protein, and glycosidase treatment and recombinant protein assays verified that it is an N,O-sialoglycoprotein. In addition, the gamete interaction-related domain recognized by the MN9 antibody is posttranslationally modified. The modified domain was identified near threonine 138, which was most likely to be O-glycosylated when analyzed by amino acid substitution, dephosphorylation, and O-glycosylation inhibitor assays. Immunogold electron microscopy localized the equatorin N-terminus, where the MN9 epitope is present, on the acrosomal membrane facing the acrosomal lumen. These biochemical properties and the localization of equatorin are important for further analysis of the translocation mechanism leading to gamete interaction.


Biotechnology Journal | 2007

Comprehensive survey of p94/calpain 3 substrates by comparative proteomics--possible regulation of protein synthesis by p94.

Yasuko Ono; Chikako Hayashi; Naoko Doi; Fujiko Kitamura; Mayumi Shindo; Kenichi Kudo; Takuichi Tsubata; Mitsuaki Yanagida; Hiroyuki Sorimachi

Calpain represents a family of Ca2+-dependent cytosolic cysteine proteases found in almost all eukaryotes and some bacteria, and is involved in a variety of biological phenomena, including brain function. Several substrates of calpain are aggressively proteolyzed under pathological conditions, e.g., in neurodegenerating processes, fodrin is proteolyzed by calpain. Because very small amounts of substrate are proteolyzed by calpain under normal biological conditions, the molecular identities of calpain substrates are largely unknown. In this study, an extensive survey of the substrates of p94/calpain 3 in COS7 cells was executed using iTRAQ™ labeling and 2-D LC-MALDI analysis. p94 was used because: (i) several p94 splicing variants are expressed in brain tissue even though p94 itself is a skeletal-muscle-specific calpain, and (ii) it exhibits Ca2+-independent activity in COS cells, which makes it useful for evaluating the effects of p94 protease activity on proteins without perturbing the cells. Our approach revealed several novel protein substrates for p94, including the substrates of conventional calpains, components of the protein synthesis system, and enzymes of the glycolytic pathway. The results demonstrate the usefulness and sensitivity of this approach for mining calpain substrates. A combination of this method with other analytical methods would contribute to elucidation of the biological relevance of the calpain family.


FEBS Journal | 1994

High-level expression of the trucated α chain of Human high-affinity receptor for IgE as a soluble form by baculovirus-infected insect cells

Shintaro Yagi; Mitsuaki Yanagida; Akira Hasegawa; Ko Okumura; Chisei Ra

The binding subunit of human high-affinity receptor for IgE (Fc epsilon RI alpha) was efficiently expressed as a truncated form in insect cells. The soluble (s)Fc epsilon RI alpha purified from culture medium by affinity chromatography with an anti-(alpha chain) mAb was nearly homogeneous and had an IgE-binding activity. The amino acid composition and the revealed N-terminal amino acid sequence of sFc epsilon RI alpha suggested that it was properly processed in insect cells. The apparent molecular mass (35 kDa) of purified sFc epsilon RI alpha was smaller than that of sFc epsilon RI alpha produced by CHO transfectants. The reduction of the apparent molecular mass after N-glycanase treatment showed the recombinant product was N-glycosylated. Peptide mapping of native and deglycosylated sFc epsilon RI alpha indicated that three Asn residues (Asn21, Asn42 and Asn166) should be almost fully glycosylated, and that two Asn residues (Asn74 and Asn135) were partially glycosylated.

Collaboration


Dive into the Mitsuaki Yanagida's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuhiro Takahashi

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge