Mitsuharu Terashima
University of Kitakyushu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mitsuharu Terashima.
Bioresource Technology | 2009
Mitsuharu Terashima; Rajeev Goel; Kazuya Komatsu; Hidenari Yasui; Hiroshi Takahashi; Yu-You Li; Tatsuya Noike
A three-dimensional CFD model incorporating the rheological properties of sludge was developed and applied to quantify mixing in a full-scale anaerobic digester. The results of the model were found to be in good agreement with experimental tracer response curve. In order to predict the dynamics of mixing, a new parameter, UI (uniformity index) was defined. The visual patterns of tracer mixing in simulation were well reflected in the dynamic variation in the value of UI. The developed model and methods were applied to determine the required time for complete mixing in a full-scale digester at different solid concentrations. This information on mixing time is considered to be useful in optimizing the feeding cycles for better digester performance.
Water Science and Technology | 2014
M. So; Daisuke Naka; Rajeev Goel; Mitsuharu Terashima; Hidenari Yasui
Sponge carrier media provide a large surface area for biofilm support; however, little information is known about how to model their dual nature as a moving bed and as porous media. To investigate the interaction of mass transfer and detachment with bio-clogging, a novel biofilm model framework was built based on individual-based modelling, and hydrodynamics were modelled using the lattice Boltzmann method. The combined model structure enabled the simulation of oxygen and biomass distribution inside the porous network as well as inside the biofilm. In order to apply the model to moving bed biofilm reactors (MBBR), biofilm detachment due to abrasion (carrier collisions) was modelled to be dependent on intracarrier distance. In the initial growth stage, biofilm grew homogeneously on the internal skeleton after which a more discontinuous growth developed which significantly increased permeability. Low detachment rates caused clogging in the outer pores which limited growth of biofilm to the surface region of the sponge. High detachment rates on the surface enabled deeper oxygen penetration with higher internal biomass activity. The degree of clogging was also sensitive to the presence of extracellular polymeric substances because of its large spatial occupancy.
Water Science and Technology | 2014
N. M. Hai; S. Sakamoto; V. C. Le; H. S. Kim; Rajeev Goel; Mitsuharu Terashima; Hidenari Yasui
Activated Sludge Models (ASMs) assume an unbiodegradable organic particulate fraction in the activated sludge, which is derived from the decay of active microorganisms in the sludge and/or introduced from wastewater. In this study, a seasonal change of such activated sludge constituents in a municipal wastewater treatment plant was monitored for 1.5 years. The chemical oxygen demand ratio of the unbiodegradable particulates to the sludge showed a sinusoidal pattern ranging from 40 to 65% along with the change of water temperature in the plant that affected the decay rate. The biogas production in a laboratory-scale anaerobic digestion (AD) process was also affected by the unbiodegradable fraction in the activated sludge fed. Based on the results a chemical pre-treatment using H2O2 was conducted on the digestate to convert the unbiodegradable fraction to a biodegradable one. Once the pre-treated digestate was returned to the digester, the methane conversion increased up to 80% which was about 2.4 times as much as that of the conventional AD process, whilst 96% of volatile solids in the activated sludge was digested. From the experiment, the additional route of the organic conversion processes for the inert fraction at the pre-treatment stage was modelled on the ASM platform with reasonable simulation accuracy.
Water Science and Technology | 2018
Bing Liu; Mitsuharu Terashima; Nguyen Truong Quan; Nguyen Thi Van Ha; Le Van Chieu; Rajeev Goel; Hidenari Yasui
High nitrite is a known operation parameter to inhibit the biological oxidation of nitrite to nitrate. The phenomenon is traditionally expressed using a Monod-type equation with non-competitive inhibition, in which the reaction associated with the biomass growth is reduced when high nitrite is present. On the other hand, very high nitrite is also known to slay nitrifiers. To clarify the difference between the growth inhibition and the poisoning, cell counting for living microorganisms in the nitrite oxidiser-enriched activated sludge was conducted in batch conditions under various nitrite concentrations together with measurements of biomass chemical oxygen demand (COD) concentration and oxygen uptake rate. The experiments demonstrated that these measureable parameters were all decayed when nitrite concentration exceeded 100-500 mgN/L at pH 7.0 in the system, indicating that nitrite poisoning took place. Biomass growth was recognised in lower range of nitrite which was expressed with growth inhibition only. Based on the response, a kinetic model for the biological nitrite oxidation was developed with a modification of IWA ASM1. The model was further utilised to calculate a possibility to wash out nitrite oxidiser in the aeration tank where a part of the return activated sludge was exposed to high nitrite liquor in a side-stream partial nitritation reactor.
Water Science and Technology | 2018
Bing Liu; Mitsuharu Terashima; Nguyen Truong Quan; Nguyen Thi Van Ha; Le Van Chieu; Rajeev Goel; Hidenari Yasui
Allylthiourea is a known specific inhibitor for ammonium oxidiser to suppress its oxygen uptake, and is commonly used for various kinds of batch respirometric tests to detect heterotrophic respiration in activated sludge. However, when high heterotrophs were present in the sample, it appeared the inhibitor was noticeably degraded and reached below the inhibition threshold after a couple of days, which resulted in overestimation of the heterotrophic respiration. The biological decomposition of the inhibitor was expressed with a Monod-type rate expression having a half-saturation coefficient of 980 mg-COD/L and maximum specific growth rate of 1.0 d-1. The developed kinetic model, including the growth and decay of the heterotrophs and nitrifiers, indicated that the ATU with about 90 mg-ATU/L which was initially dosed to the system would reach below the inhibition threshold of 1.0 mg-ATU/L after 10 days when 750 mg-COD/L of heterotrophs were present. From the kinetic model, an empirical formula to calculate a safe minimum ATU dose for the batch respirometric test was elaborated. The model also provided a modified experimental procedure to accurately estimate the initial heterotrophic biomass concentration in the sample and its specific decay rate based on IWA Activated Sludge Models.
International Journal of Environmental Research and Public Health | 2018
Takahiro Fujioka; Kha Nguyen; Anh Tram Hoang; Tetsuro Ueyama; Hidenari Yasui; Mitsuharu Terashima; Long D. Nghiem
Pre-concentration is essential for energy and resource recovery from municipal wastewater. The potential of forward osmosis (FO) membranes to pre-concentrate wastewater for subsequent biogas production has been demonstrated, although biofouling has also emerged as a prominent challenge. This study, using a cellulose triacetate FO membrane, shows that chloramination of wastewater in the feed solution at 3–8 mg/L residual monochloramine significantly reduces membrane biofouling. During a 96-h pre-concentration, flux in the chloraminated FO system decreased by only 6% and this flux decline is mostly attributed to the increase in salinity (or osmotic pressure) of the feed due to pre-concentration. In contrast, flux in the non-chloraminated FO system dropped by 35% under the same experimental conditions. When the feed was chloraminated, the number of bacterial particles deposited on the membrane surface was significantly lower compared to a non-chloraminated wastewater feed. This study demonstrated, for the first time, the potential of chloramination to inhibit bacteria growth and consequently biofouling during pre-concentration of wastewater using a FO membrane.
Bioresource Technology | 2017
Bing Liu; Van Anh Ngo; Mitsuharu Terashima; Hidenari Yasui
The aim of this study was the evaluation of anaerobic treatment for the soluble organics generated from a steam-explosion pre-treatment of sugarcane bagasse. The batch analysis revealed that about 50% of the organics was possible to be degraded into methane whilst the rest was biologically inert and composed of mostly lignin. Based on the experiment a kinetic model composed of 14 kinds of soluble substances and 5 kinds of anaerobic microorganisms was developed. The model was used to simulate the process performance of a continuous anaerobic bioreactor with MLSS concentration at 2500-15,000mg/L. The simulation indicated that the bioreactor could receive the influent until 0.4kg-COD/kg-MLSS/d of loading without significant deterioration of methane conversion. By addition of powdered activated carbon, the rest of unbiodegradable soluble organics and dark brown colour in the effluent were removed to 840mg-C/L and 760 unit respectively at adsorption of 190mg-C/g-PAC and 1200unit/g-PAC.
Water Science and Technology | 2013
Mitsuharu Terashima; M. Iwasaki; Hidenari Yasui; Rajeev Goel; Koichi Suto; Chihiro Inoue
This paper describes the development of a new dissolved air flotation (DAF) separator with a flow streamlining baffle to improve solid separation efficiency. The analysis of the RTD (residence time distribution) curves indicated that the parameter θ(10) (dimensionless time at which 10% of tracer has discharged) increased from 0.38 for control reactor to 0.54 for the test reactor, suggesting significant reduction in short circuit flow. The RTD curves were also used to develop a compartment model for white water (rich in micro-bubbles and water flow is turbulent) and clear water (little or no air content and water flow is quiescent) zones in the reactor using a series of CSTR (continuous stirred tank reactors) and plug flow regime respectively. The proportion of the volume occupied by the white water zone was different in control and test configurations. In the test reactor, the fraction of the clear water zone was found to increase from 6 to 37%, resulting in improvement of the suspended solid (SS) removal efficiency from 97 to 99%.
Biochemical Engineering Journal | 2016
Bing Liu; Kohei Yoshinaga; Jer Horng Wu; Wei Yu Chen; Mitsuharu Terashima; Rajeev Goel; Domenico Pangallo; Hidenari Yasui
Journal of water process engineering | 2016
Mitsuharu Terashima; Magnus So; Rajeev Goel; Hidenari Yasui