Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuhiro Fukushima is active.

Publication


Featured researches published by Mitsuhiro Fukushima.


International Journal of Modern Physics D | 1999

LARGE-SCALE CRYOGENIC GRAVITATIONAL WAVE TELESCOPE

Kazuaki Kuroda; Masatake Ohashi; Shinji Miyoki; Daisuke Tatsumi; Shuichi Sato; Hideki Ishizuka; Masa Katsu Fujimoto; Seiji Kawamura; Ryutaro Takahashi; Toshitaka Yamazaki; Koji Arai; Mitsuhiro Fukushima; Koichi Waseda; Souichi Telada; Akitoshi Ueda; T. Shintomi; Akira Yamamoto; Toshikazu Suzuki; Yoshio Saito; T. Haruyama; Nobuaki Sato; Kimio Tsubono; Keita Kawabe; Masaki Ando; Ken-ichi Ueda; Hitoki Yoneda; Mitsuru Musha; Norikatsu Mio; Shigenori Moriwaki; Akito Araya

We present here the Large-scale Cryogenic Gravitational wave Telescope (LCGT) project which is aimed to improve the sensitivity of the existing gravitational wave projects by ten times. LCGT is the project constructing the km-scale gravitational wave detector in Japan succeeding the TAMA project, which adopts cryogenic mirrors with a higher power laser. We are planing to build it in an underground site in Kamioka mine. If its target sensitivity is attained, we will be able to catch a few events per month.


Classical and Quantum Gravity | 2002

Mirror suspension system for the TAMA SAS

A. Takamori; Masaki Ando; A. Bertolini; G. Cella; R. DeSalvo; Mitsuhiro Fukushima; Yukiyoshi Iida; Florian Jacquier; Seiji Kawamura; S. Márka; Yuhiko Nishi; Kenji Numata; V. Sannibale; Kentaro Somiya; Ryutaro Takahashi; Hareem Tariq; Kimio Tsubono; Jose Ugas; Nicolas Viboud; Hiroaki Yamamoto; Tatsuo Yoda; Chenyang Wang

Several R&D programmes are ongoing to develop the next generation of interferometric gravitational wave detectors providing the superior sensitivity desired for refined astronomical observations. In order to obtain a wide observation band at low frequencies, the optics need to be isolated from the seismic noise. The TAMA SAS (seismic attenuation system) has been developed within an international collaboration between TAMA, LIGO, and some European institutes, with the main objective of achieving sufficient low-frequency seismic attenuation (−180 dB at 10 HZ). The system suppresses seismic noise well below the other noise levels starting at very low frequencies above 10 Hz. It also includes an active inertial damping system to decrease the residual motion of the optics enough to allow a stable operation of the interferometer. The TAMA SAS also comprises a sophisticated mirror suspension subsystem (SUS). The SUS provides support for the optics and vibration isolation complementing the SAS performance. The SUS is equipped with a totally passive magnetic damper to suppress internal resonances without degrading the thermal noise performance. In this paper we discuss the SUS details and present prototype results.


Classical and Quantum Gravity | 2008

Operational status of TAMA300 with the seismic attenuation system (SAS)

Ryutaro Takahashi; Koji Arai; Daisuke Tatsumi; Mitsuhiro Fukushima; Toshitaka Yamazaki; M. K. Fujimoto; K. Agatsuma; Y. Arase; Noriyasu Nakagawa; A. Takamori; Kimio Tsubono; R. DeSalvo; A. Bertolini; S. Márka; V. Sannibale

TAMA300 has been upgraded to improve the sensitivity at low frequencies after the last observation run in 2004. To avoid the noise caused by seismic activities, we installed a new seismic isolation system —- the TAMA seismic attenuation system (SAS). Four SAS towers for the test-mass mirrors were sequentially installed from 2005 to 2006. The recycled Fabry–Perot Michelson interferometer was successfully locked with the SAS. We confirmed the reduction of both length and angular fluctuations at frequencies higher than 1 Hz owing to the SAS.


Classical and Quantum Gravity | 2003

Present status of large-scale cryogenic gravitational wave telescope

Kazuaki Kuroda; Masatake Ohashi; Shinji Miyoki; Takashi Uchiyama; Hideki Ishitsuka; Kazuhiro Yamamoto; K. Kasahara; M. K. Fujimoto; Seiji Kawamura; Ryutaro Takahashi; Toshitaka Yamazaki; Koji Arai; Daisuke Tatsumi; Akitoshi Ueda; Mitsuhiro Fukushima; Shuichi Sato; Shigeo Nagano; Y. Tsunesada; Zong Hong Zhu; T. Shintomi; Akira Yamamoto; T. Suzuki; Yoshio Saito; T. Haruyama; Nobuaki Sato; Yasuo Higashi; Takayuki Tomaru; Kimio Tsubono; Masaki Ando; A. Takamori

The large-scale cryogenic gravitational wave telescope (LCGT) is the future project of the Japanese gravitational wave group. Two sets of 3 km arm length laser interferometric gravitational wave detectors will be built in a tunnel of Kamioka mine in Japan. LCGT will detect chirp waves from binary neutron star coalescence at 240 Mpc away with a S/N of 10. The expected number of detectable events in a year is two or three. To achieve the required sensitivity, several advanced techniques will be employed such as a low-frequency vibration-isolation system, a suspension point interferometer, cryogenic mirrors, a resonant side band extraction method, a high-power laser system and so on. We hope that the beginning of the project will be in 2005 and the observations will start in 2009.


Physical Review Letters | 2008

Search for a stochastic background of 100-MHz gravitational waves with laser interferometers

Tomotada Akutsu; Seiji Kawamura; A. Nishizawa; Koji Arai; Kazuhiro Yamamoto; Daisuke Tatsumi; Shigeo Nagano; Erina Nishida; Takeshi Chiba; Ryuichi Takahashi; Naoshi Sugiyama; Mitsuhiro Fukushima; Toshitaka Yamazaki; Masa Katsu Fujimoto

This Letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) interferometers. Each interferometer has a strain sensitivity of approximately 10;{-16} Hz;{-1/2} at 100 MHz. By cross-correlating the outputs of the two interferometers within 1000 seconds, we found h{100};{2}Omega_{gw}<6 x 10;{25} to be an upper limit on the energy density spectrum of the GW background in a 2-kHz bandwidth around 100 MHz, where a flat spectrum is assumed.


Classical and Quantum Gravity | 2009

Status of Japanese gravitational wave detectors

Koji Arai; Ryutaro Takahashi; Daisuke Tatsumi; K. Izumi; Yaka Wakabayashi; H. Ishizaki; Mitsuhiro Fukushima; Toshitaka Yamazaki; M. K. Fujimoto; A. Takamori; Kimio Tsubono; R. DeSalvo; A. Bertolini; S. Márka; V. Sannibale; Takashi Uchiyama; O. Miyakawa; Shinji Miyoki; K. Agatsuma; Takanori Saito; Masatake Ohashi; Kenta Kuroda; I. Nakatani; Souichi Telada; Kazuhiro Yamamoto; Takayuki Tomaru; T. Suzuki; T. Haruyama; Nobuaki Sato; Akira Yamamoto

The Large-scale Cryogenic Gravitational wave Telescope (LCGT) is planned as a future Japanese project for gravitational wave detection. A 3 km interferometer will be built in an underground mine at Kamioka. Cryogenic sapphire mirrors are going to be employed for the test masses. For the demonstration of LCGT technologies, two prototype interferometers, TAMA300 and CLIO, are being developed. This paper describes the current status of the LCGT project and the two prototype interferometers.


Classical and Quantum Gravity | 2002

Japanese large-scale interferometers

Kazuaki Kuroda; Masatake Ohashi; Shinji Miyoki; Hideki Ishizuka; C.T Taylor; Kazuhiro Yamamoto; O. Miyakawa; M. K. Fujimoto; Seiji Kawamura; Ryutaro Takahashi; Toshitaka Yamazaki; Koji Arai; Daisuke Tatsumi; Akitoshi Ueda; Mitsuhiro Fukushima; Shuichi Sato; Takakazu Shintomi; Akira Yamamoto; Toshikazu Suzuki; Yoshio Saito; T. Haruyama; Nobuaki Sato; Yasuo Higashi; Takashi Uchiyama; Takayuki Tomaru; Kimio Tsubono; Masaki Ando; A. Takamori; Kenji Numata; Ken-ichi Ueda

The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry–Perot–Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R&D.


Classical and Quantum Gravity | 2002

Anatomy of the TAMA SAS seismic attenuation system

S. Márka; A. Takamori; Masaki Ando; A. Bertolini; G. Cella; R. DeSalvo; Mitsuhiro Fukushima; Yukiyoshi Iida; Florian Jacquier; Seiji Kawamura; Yuhiko Nishi; Kenji Numata; V. Sannibale; Kentaro Somiya; Ryutaro Takahashi; Hareem Tariq; Kimio Tsubono; Jose Ugas; Nicolas Viboud; Chenyang Wang; Hiroaki Yamamoto; Tatsuo Yoda

The TAMA SAS seismic attenuation system was developed to provide the extremely high level of seismic isolation required by the next generation of interferometric gravitational wave detectors to achieve the desired sensitivity at low frequencies. Our aim was to provide good performance at frequencies above ~10 Hz, while utilizing only passive subsystems in the sensitive frequency band of the TAMA interferometric gravitational wave detectors. The only active feedback is relegated below 6 Hz and it is used to damp the rigid body resonances of the attenuation chain. Simulations, based on subsystem performance characterizations, indicate that the system can achieve rms mirror residual motion measured in a few tens of nanometres. We will give a brief overview of the subsystems and point out some of the characterization results, supporting our claims of achieved performance. SAS is a passive, UHV compatible and low cost system. It is likely that extremely sensitive experiments in other fields will also profit from our study.


Review of Scientific Instruments | 2002

Vacuum-compatible vibration isolation stack for an interferometric gravitational wave detector TAMA300

Ryutaro Takahashi; F. Kuwahara; E. Majorana; M. A. Barton; Takeshi Uchiyama; Kenta Kuroda; Akito Araya; Koji Arai; A. Takamori; Masaki Ando; Kimio Tsubono; Mitsuhiro Fukushima; Yoshio Saito

Interferometric gravitational wave detectors require a large degree of vibration isolation. For this purpose, a multilayer stack constructed of rubber and metal blocks is suitable, because it provides isolation in all degrees of freedom at once. In TAMA300, a 300 m interferometer in Japan, long-term dimensional stability and compatibility with an ultrahigh vacuum environment of about 10−6 Pa are also required. To keep the interferometer at its operating point despite ground strain and thermal drift of the isolation system, a thermal actuator was introduced. To prevent the high outgassing rate of the rubber from spoiling the vacuum, the rubber blocks were enclosed by gas-tight bellows. Using these techniques, we have successfully developed a three-layer stack which has a vibration isolation ratio of more than 103 at 300 Hz with control of drift and enough vacuum compatibility.


Classical and Quantum Gravity | 2007

Current status of Japanese detectors

Daisuke Tatsumi; Ryutaro Takahashi; Koji Arai; Noriyasu Nakagawa; K. Agatsuma; Toshitaka Yamazaki; Mitsuhiro Fukushima; Masa Katsu Fujimoto; A. Takamori; A. Bertolini; V. Sannibale; R. DeSalvo; S. Márka; Masaki Ando; Kimio Tsubono; Tomomi Akutsu; Kazuhiro Yamamoto; Hideki Ishitsuka; Takashi Uchiyama; Shinji Miyoki; Masatake Ohashi; Kazuaki Kuroda; Norichika Awaya; Nobuyuki Kanda; Akito Araya; Souichi Telada; Takayuki Tomaru; T. Haruyama; Akira Yamamoto; Nobuaki Sato

The current status of the TAMA and CLIO detectors in Japan is reported in this paper. These two interferometric gravitational wave detectors are being developed for the large cryogenic gravitational wave telescope (LCGT) which is a future plan for detecting gravitational wave signals at least once per year. TAMA300 is being upgraded to improve the sensitivity in a low-frequency region after the last observational experiment in 2004. To reduce the seismic noises, we are installing a new seismic isolation system, called the TAMA seismic attenuation system, for the four test masses. We confirmed stable mass locks of a cavity and improvements of length and angular fluctuations by using two SASs. We are currently optimizing the performance of the third and fourth SASs. We continue TAMA300 operation and R&D studies for the LCGT. The next data taking is planned for the summer of 2007. CLIO is a 100 m baseline length prototype detector for LCGT to investigate interferometer performance in cryogenic condition. The key features of CLIO are that it locates the Kamioka underground site for a low-seismic noise level, and adopts cryogenic Sapphire mirrors for low-thermal noise level. The first operation of the cryogenic interferometer was successfully demonstrated in February 2006. Current sensitivity at room temperature is close to the target sensitivity within a factor of 4. Several observational experiments at room temperature have been done. Once the displacement noise reaches the thermal noise level of room temperature, its improvement by cooling test mass mirrors should be demonstrated.

Collaboration


Dive into the Mitsuhiro Fukushima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuichi Sato

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge