Mitsuhiro Niimi
University of Miyazaki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mitsuhiro Niimi.
Soil Science and Plant Nutrition | 2013
Mariko Shimizu; Ryusuke Hatano; Takatoshi Arita; Yasuyuki Kouda; Akinori Mori; Shoji Matsuura; Mitsuhiro Niimi; Tao Jin; Alexey Desyatkin; Osamu Kawamura; Masayuki Hojito; Akira Miyata
The objectives of this study were to clarify the effect of chemical fertilizer and manure application on methane (CH4) and nitrous oxide (N2O) emissions from intensively managed grassland on Andosols in Japan and to determine the controlling factors of the CH4 and N2O emissions. The emission factors (EF) for both fertilizer- and manure-induced N2O emissions were calculated. Three experimental plots were set up in five grasslands across four climatic regions in Japan: one plot for treatment with chemical fertilizer (fertilizer plot); another plot for treatment with cattle manure and chemical fertilizer (manure plot), and the final plot was not treated with chemical fertilizer or manure (control plot). The type of chemical fertilizer was ammonium-based fertilizer or a combination fertilizer of ammonium and urea. CH4 and N2O emissions were measured at the study sites for six years. For the manure plot, a supplement of chemical fertilizer was added to equalize the supply rate of mineral nitrogen (N) relative to that of the fertilizer plots. There were no significant differences in CH4 emissions among the treatment plots, and the effect of fertilizer or manure application was not evident. CH4 emissions tended to be larger at sites with higher soil moisture content. The application of chemical fertilizer or manure increased N2O emissions at all the sites, and there were significant differences among the sites and across different years. Background N2O emissions (N2O emissions at the control plot) had strong positive correlations with air temperature and precipitation, along with weak positive correlations with soil carbon and N content. Therefore, an empirical model (Background N2O emission = 0.298 × air temperature + 0.512 × soil N content −3.77) was established. Fertilizer-induced N2O emission factor (EF) had a positive correlation (R2 = 0.50, p < 0.01) with precipitation (Fertilizer-induced EF = 0.0022 × precipitation −1.3), and increasing precipitation enhanced N2O production through the denitrification process due to applied fertilizer N. There were no significant differences in manure-induced EFs among the sites, and the average was 0.36% except for an outlier.
Archive | 2014
Mariko Shimizu; Ryusuke Hatano; Takatoshi Arita; Yasuyuki Kouda; Akinori Mori; Shoji Matsuura; Mitsuhiro Niimi; Masayoshi Mano; Ryuichi Hirata; Tao Jin; Atfritedy Limin; Toshiya Saigusa; Osamu Kawamura; Masayuki Hojito; Akira Miyata
Applying manure can lead to decrease of chemical nitrogen (N) fertilizer use and increase of soil carbon (C) sequestration. The effect of manure application on net ecosystem C balance (NECB), methane (CH4) and nitrous oxide (N2O) emissions and global warming potential (GWP) was examined at four managed grasslands on Andosols in different climatic regions in Japan for 3 years. At adjoining manure and fertilizer plots in each site, net ecosystem exchange (NEE) and CH4 and N2O fluxes were measured by the eddy covariance method and dark chamber methods, respectively. Manure application decreased fertilizer N application rate in manure plot to 65–88 % in fertilizer plot. NECB (= NEE−C applied in manure + harvested C) was higher in fertilizer plot (1.9 ± 0.9 MgC ha−1 year−1) than in manure plot (−1.8 ± 1.8 MgC ha−1 year−1), indicating that the soils in fertilizer plots lost C. There was no significant difference in harvested C between fertilizer and manure plots (4.3 ± 0.8 and 4.1 ± 0.6 MgC ha−1 year−1, respectively). NEE showed more CO2 uptake in fertilizer plots (−2.4 ± 1.1 MgC ha−1 year−1) than in manure plots (−1.6 ± 0.7 MgC ha−1 year−1), but manure application could compensate for the shortage in NEE. CH4 emission was close to zero, while the N2O emission was greater in manure plots (6.2 ± 3.7 kgN ha−1 year−1) than in fertilizer plots (3.6 ± 3.2 kgN ha−1 year−1). The difference of GWP between manure and fertilizer plots showed a negative relationship with manure C application rate (y = −4.45 ln(x) + 2.84; R 2 = 0.85; p < 0.01), indicating that manure application rate more than 2 MgC ha−1 year−1 can mitigate global warming in the Japanese grasslands.
Grassland Science | 2006
M. M. Rahman; Mitsuhiro Niimi; Yasuyuki Ishii; Osamu Kawamura
Grassland Science | 2007
M. M. Rahman; Mitsuhiro Niimi; Osamu Kawamura
Agricultural and Forest Meteorology | 2013
Ryuichi Hirata; Akira Miyata; Masayoshi Mano; Mariko Shimizu; Takatoshi Arita; Yasuyuki Kouda; Shoji Matsuura; Mitsuhiro Niimi; Toshiya Saigusa; Akinori Mori; Masayuki Hojito; Osamu Kawamura; Ryusuke Hatano
Asian-australasian Journal of Animal Sciences | 2003
Nasrullah; Mitsuhiro Niimi; Ryo Akashi; Osamu Kawamura
Grassland Science | 2008
M. M. Rahman; Yasuyuki Ishii; Mitsuhiro Niimi; Osamu Kawamura
Asian-australasian Journal of Animal Sciences | 2008
M. M. Rahman; M. Yamamoto; Mitsuhiro Niimi; Osamu Kawamura
Tropical Grasslands | 2009
M. M. Rahman; Yasuyuki Ishii; Mitsuhiro Niimi; Osamu Kawamura
Asian-australasian Journal of Animal Sciences | 2011
M. M. Rahman; Toshinori Nakagawa; Mitsuhiro Niimi; Kiichi Fukuyama; Osamu Kawamura