Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuhiro Ohshima is active.

Publication


Featured researches published by Mitsuhiro Ohshima.


Biochemical and Biophysical Research Communications | 2012

Characterization of human lung cancer-associated fibroblasts in three-dimensional in vitro co-culture model.

Masafumi Horie; Akira Saito; Yu Mikami; Mitsuhiro Ohshima; Yasuyuki Morishita; Jun Nakajima; Tadashi Kohyama; Takahide Nagase

Lung cancer is the most common cause of cancer-related death worldwide. Stromal cancer-associated fibroblasts (CAFs) play crucial roles in carcinogenesis, proliferation, invasion, and metastasis of non-small cell lung carcinoma, and targeting of CAFs could be a novel strategy for cancer treatment. However, the characteristics of human CAFs still remain to be better defined. In this study, we established patient-matched CAFs and normal fibroblasts (NFs), from tumoral and non-tumoral portions of resected lung tissue from lung cancer patients. CAFs showed higher α-smooth muscle actin (α-SMA) expression than NFs, and CAFs clearly enhanced collagen gel contraction. Furthermore, we employed three-dimensional co-culture assay with A549 lung cancer cells, where CAFs were more potent in inducing collagen gel contraction. Hematoxylin and eosin staining of co-cultured collagen gel revealed that CAFs had the potential to increase invasion of A549 cells compared to NFs. These observations provide evidence that lung CAFs have the tumor-promoting capacity distinct from NFs.


PLOS ONE | 2013

An Integrated Expression Profiling Reveals Target Genes of TGF-β and TNF-α Possibly Mediated by MicroRNAs in Lung Cancer Cells

Akira Saito; Hiroshi I. Suzuki; Masafumi Horie; Mitsuhiro Ohshima; Yasuyuki Morishita; Yoshimitsu Abiko; Takahide Nagase

EMT (epithelial-mesenchymal transition) is crucial for cancer cells to acquire invasive phenotypes. In A549 lung adenocarcinoma cells, TGF-β elicited EMT in Smad-dependent manner and TNF-α accelerated this process, as confirmed by cell morphology, expression of EMT markers, capacity of gelatin lysis and cell invasion. TNF-α stimulated the phosphorylation of Smad2 linker region, and this effect was attenuated by inhibiting MEK or JNK pathway. Comprehensive expression analysis unraveled genes differentially regulated by TGF-β and TNF-α, such as cytokines, chemokines, growth factors and ECM (extracellular matrices), suggesting the drastic change in autocrine/paracrine signals as well as cell-to-ECM interactions. Integrated analysis of microRNA signature enabled us to identify a subset of genes, potentially regulated by microRNAs. Among them, we confirmed TGF-β-mediated induction of miR-23a in lung epithelial cell lines, target genes of which were further identified by gene expression profiling. Combined with in silico approaches, we determined HMGN2 as a downstream target of miR-23a. These findings provide a line of evidence that the effects of TGF-β and TNF-α were partially mediated by microRNAs, and shed light on the complexity of molecular events elicited by TGF-β and TNF-α.


Nature Biotechnology | 2017

An integrated expression atlas of miRNAs and their promoters in human and mouse

Derek De Rie; Imad Abugessaisa; Tanvir Alam; Erik Arner; Peter Arner; Haitham Ashoor; Gaby Åström; Magda Babina; Nicolas Bertin; A. Maxwell Burroughs; Ailsa Carlisle; Carsten O. Daub; Michael Detmar; Ruslan Deviatiiarov; Alexandre Fort; Claudia Gebhard; Dan Goldowitz; Sven Guhl; Thomas Ha; Jayson Harshbarger; Akira Hasegawa; Kosuke Hashimoto; Meenhard Herlyn; Peter Heutink; Kelly J Hitchens; Chung Chau Hon; Edward Huang; Yuri Ishizu; Chieko Kai; Takeya Kasukawa

MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions.


Clinical Cancer Research | 2014

An Integrative Analysis of the Tumorigenic Role of TAZ in Human Non-Small Cell Lung Cancer

Satoshi Noguchi; Akira Saito; Masafumi Horie; Yu Mikami; Hiroshi I. Suzuki; Yasuyuki Morishita; Mitsuhiro Ohshima; Yoshimitsu Abiko; Johanna Sofia Margareta Mattsson; Helena König; Miriam Lohr; Karolina Edlund; Johan Botling; Patrick Micke; Takahide Nagase

Purpose: TAZ, also known as WWTR1, has recently been suggested as an oncogene in non–small cell lung cancer (NSCLC). We investigated the clinical relevance of TAZ expression and its functional role in NSCLC tumorigenesis. Experimental Design: We characterized TAZ at the DNA (n = 192), mRNA (n = 196), and protein levels (n = 345) in an NSCLC patient cohort. Gene expression analysis was complemented by a meta-analysis of public datasets (n = 1,382). The effects of TAZ on cell proliferation and cell cycle were analyzed in cell cultures and on tumor growth in mice. TAZ-dependent microarray-based expression profiles in NSCLC cells were combined with molecular profiles in human NSCLC tissues for in silico analysis. Results: Higher TAZ mRNA and protein levels were associated with shorter patient survival. Transduction of TAZ enhanced cell proliferation and tumorigenesis in bronchial epithelial cells, whereas TAZ silencing suppressed cell proliferation and induced cell cycle arrest in NSCLC cells. Microarray and cell culture experiments showed that ErbB ligands (amphiregulin, epiregulin, and neuregulin 1) are downstream targets of TAZ. Our in silico analysis revealed a TAZ signature that substantiated the clinical impact of TAZ and confirmed its relationship to the epidermal growth factor receptor signaling pathway. Conclusion: TAZ expression defines a clinically distinct subgroup of patients with NSCLC. ErbB ligands are suggested to mediate the effects of TAZ on lung cancer progression. Our findings emphasize the tumorigenic role of TAZ and may serve as the basis for new treatment strategies. Clin Cancer Res; 20(17); 4660–72. ©2014 AACR.


Journal of Dental Research | 2010

TGF-β signaling in gingival fibroblast-epithelial interaction.

Mitsuhiro Ohshima; Yoko Yamaguchi; Naoyuki Matsumoto; Patrick Micke; Y. Takenouchi; Tetsuya Nishida; Mitsuyasu Kato; Kazuo Komiyama; Yoshimitsu Abiko; Keiko Ito; Kichibee Otsuka; Kai Kappert

The underlying mechanism and the therapeutic regimen for the transition of reversible gingivitis to irreversible periodontitis are unclear. Since transforming growth factor (TGF)-β has been implicated in differentially regulated gene expression in gingival fibroblasts, we hypothesized that TGF-β signaling is activated in periodontitis-affected gingiva, along with enhanced collagen degradation, that is reversed by TGF-β inhibition. A novel three-dimensional (3D) gel-culture system consisting of primary human gingival fibroblasts (GF) and gingival epithelial (GE) cells in collagen gels was applied. GF populations from patients with severe periodontitis degraded collagen gels, which was reduced by TGF-β-receptor kinase inhibition. Up-regulation of TGF-β-responsive genes was evident in GF/GE co-cultures. Furthermore, the TGF-β downstream transducer Smad3C was highly phosphorylated in periodontitis-affected gingiva and 3D cultures. These results imply that TGF-β signaling is involved in fibroblast-epithelial cell interaction in periodontitis, and suggest that the 3D culture system is a useful in vitro model for therapeutic drug screening for periodontitis.


BMC Cancer | 2014

Differential knockdown of TGF-β ligands in a three-dimensional co-culture tumor- stromal interaction model of lung cancer

Masafumi Horie; Akira Saito; Satoshi Noguchi; Yoko Yamaguchi; Mitsuhiro Ohshima; Yasuyuki Morishita; Hiroshi Suzuki; Tadashi Kohyama; Takahide Nagase

BackgroundTransforming growth factor (TGF)-β plays a pivotal role in cancer progression through regulating cancer cell proliferation, invasion, and remodeling of the tumor microenvironment. Cancer-associated fibroblasts (CAFs) are the predominant type of stromal cell, in which TGF-β signaling is activated. Among the strategies for TGF-β signaling inhibition, RNA interference (RNAi) targeting of TGF-β ligands is emerging as a promising tool. Although preclinical studies support the efficacy of this therapeutic strategy, its effect on the tumor microenvironment in vivo remains unknown. In addition, differential effects due to knockdown of various TGF-β ligand isoforms have not been examined. Therefore, an experimental model that recapitulates tumor–stromal interaction is required for validation of therapeutic agents.MethodsWe have previously established a three-dimensional co-culture model of lung cancer, and demonstrated the functional role of co-cultured fibroblasts in enhancing cancer cell invasion and differentiation. Here, we employed this model to examine how knockdown of TGF-β ligands affects the behavior of different cell types. We developed lentivirus vectors carrying artificial microRNAs against human TGF-β1 and TGF-β2, and tested their effects in lung cancer cells and fibroblasts.ResultsLentiviral vectors potently and selectively suppressed the expression of TGF-β ligands, and showed anti-proliferative effects on these cells. Furthermore, knockdown of TGF-β ligands attenuated fibroblast-mediated collagen gel contraction, and diminished lung cancer cell invasion in three-dimensional co-culture. We also observed differential effects by targeting different TGF-β isoforms in lung cancer cells and fibroblasts.ConclusionsOur findings support the notion that RNAi-mediated targeting of TGF-β ligands may be beneficial for lung cancer treatment via its action on both cancer and stromal cells. This study further demonstrates the usefulness of this three-dimensional co-culture model to examine the effect of therapeutic agents on tumor–stromal interaction.


Connective Tissue Research | 2006

Laminin Expression by Human Periodontal Ligament Fibroblasts

Mitsuhiro Ohshima; Yoko Yamaguchi; Kichibee Otsuka; Masashi Sato; Masako Ishikawa

Our previous study demonstrated that a laminin-like molecule produced by periodontal ligament fibroblasts (PLFs) induces gingival epithelial cell chemotaxis. The aim of this study was to identify the laminin isoforms that are expressed by PLFs. Proteins in PLF-conditioned medium from serum-free cultures were separated by gel filtration followed by gelatin-affinity chromatography to remove fibronectin. Protein expression of laminin isoforms was determined using Western blotting, and mRNA expression was examined by RT-PCR. Partially purified laminin evoked gingival epithelial cell chemotaxis, and this activity was blocked by anti-integrin α3, α6, and β1 antibodies. Although RT-PCR analysis showed PLFs expressed laminin α1 to α5, β1 to β3, γ1, and γ2 chain mRNAs, the predominant laminin chains detected by Western blotting were α4, α2, β1, β2, and γ1. These results suggest that PLFs secrete mainly laminin-8/9 (α4β1γ1/α4β2γ1) and laminin-2/4 (α2β1γ1/α2β2γ1). PLF-derived laminins may be involved in the pathogenesis and progression of periodontitis by inducing apical migration of epithelial cells in certain circumstances.


Cancer Science | 2016

YAP and TAZ modulate cell phenotype in a subset of small cell lung cancer.

Masafumi Horie; Akira Saito; Mitsuhiro Ohshima; Hiroshi I. Suzuki; Takahide Nagase

Small cell lung cancer (SCLC) is a highly aggressive and metastatic malignancy that shows rapid development of chemoresistance and a high rate of recurrence. Recent genome and transcriptome studies have provided the whole landscape of genomic alterations and gene expression changes in SCLC. In light of the inter‐individual heterogeneity of SCLC, subtyping of SCLC might be helpful for prediction of therapeutic response and prognosis. Based on the transcriptome data of SCLC cell lines, we undertook transcriptional network‐defined SCLC classification and identified a unique SCLC subgroup characterized by relatively high expression of Hippo pathway regulators Yes‐associated protein (YAP) and transcriptional coactivator with PDZ‐binding motif (TAZ) (YAP/TAZ subgroup). The YAP/TAZ subgroup displayed adherent cell morphology, lower expression of achaete‐scute complex homolog 1 (ASCL1) and neuroendocrine markers, and higher expression of laminin and integrin. YAP knockdown caused cell morphological alteration reminiscent of floating growth pattern in many SCLC cell lines, and microarray analyses revealed a subset of genes regulated by YAP, including Ajuba LIM protein (AJUBA). AJUBA also contributed to cell morphology regulation. Of clinical importance, SCLC cell lines of the YAP/TAZ subgroup showed unique patterns of drug sensitivity. Our findings shed light on a subtype of SCLC with YAP and TAZ expression, and delineate molecular networks underlying the heterogeneity of SCLC.


Journal of Molecular Histology | 2014

Expression and localization of laminin 5, laminin 10, type IV collagen, and amelotin in adult murine gingiva

Takashi Sawada; Takaki Yamazaki; Kazuko Shibayama; Kaido Kumazawa; Yoko Yamaguchi; Mitsuhiro Ohshima

The biochemical composition of the internal and external basal laminae in the junctional epithelium differs significantly, and the precise cellular origin of their respective molecules remains to be determined. In the present study, the expression and localization of three basement membrane-specific molecules—laminin 5 (γ2 chain), type IV collagen (α1 chain), and laminin 10 (α5 chain)—and one tooth-specific molecule, amelotin, was analyzed in adult murine gingiva by using in situ hybridization and immunohistochemistry. The results showed that the outermost cells in junctional epithelium facing the tooth enamel strongly expressed laminin 5 mRNA, supporting the immunohistochemical staining data. This suggests that laminin 5 is actively synthesized in junctional epithelial cells and that the products are incorporated into the internal basal lamina to maintain firm epithelial adhesion to the tooth enamel throughout life. Conversely, no amelotin mRNA signals were detected in the junctional epithelial cells, suggesting that the molecules localized on the internal basal lamina are mainly derived from maturation-stage ameloblasts. Weak and sporadic expression of type IV collagen in addition to laminin 10 in the gingiva indicates that these molecules undergo turnover less frequently in adult animals.


Biochemical and Biophysical Research Communications | 2009

bFGF rescues imatinib/STI571-induced apoptosis of sis-NIH3T3 fibroblasts.

Mitsuhiro Ohshima; Yoko Yamaguchi; Kai Kappert; Patrick Micke; Kichibee Otsuka

PDGF-B-transfected, sis-NIH3T3 fibroblasts serve as a model system for examining the role of PDGF signaling in tumors. We have found that imatinib/STI571, a tyrosine kinase inhibitor targeting PDGF receptors, induces apoptosis of sis-NIH3T3 fibroblasts cultured under serum free conditions, which was rescued by the addition of 10% newborn calf serum (NCS). Therefore, growth factors included in serum were tested with regard to their ability to rescue imatinib-induced apoptosis. While PDGF-AB, EGF, and IGF-I failed to protect imatinib-induced sis-NIH3T3 cell apoptosis, bFGF rescued it. The effects of bFGF were confirmed by both cell viability assays and Bax/Bcl-2 gene expression ratio. An FGF receptor inhibitor, PD166866, invalidated the protective effect of bFGF. However, combination of imatinib and PD166866 failed to induce cell death of sis-NIH3T3 cells when cultured in 10% NCS. These results indicate that synergistic administration of some types of tyrosine kinase inhibitors need to be tested under in vivo-like conditions to establish novel strategies in anti-cancer therapy.

Collaboration


Dive into the Mitsuhiro Ohshima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge