Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuhiro Tsuchiya is active.

Publication


Featured researches published by Mitsuhiro Tsuchiya.


Cell | 2008

Yeast Life Span Extension by Depletion of 60S Ribosomal Subunits Is Mediated by Gcn4

Kristan K. Steffen; Vivian L. MacKay; Emily O. Kerr; Mitsuhiro Tsuchiya; Di Hu; Lindsay A. Fox; Nick Dang; Elijah D. Johnston; Jonathan A. Oakes; Bie N. Tchao; Diana N. Pak; Stanley Fields; Brian K. Kennedy; Matt Kaeberlein

In nearly every organism studied, reduced caloric intake extends life span. In yeast, span extension from dietary restriction is thought to be mediated by the highly conserved, nutrient-responsive target of rapamycin (TOR), protein kinase A (PKA), and Sch9 kinases. These kinases coordinately regulate various cellular processes including stress responses, protein turnover, cell growth, and ribosome biogenesis. Here we show that a specific reduction of 60S ribosomal subunit levels slows aging in yeast. Deletion of genes encoding 60S subunit proteins or processing factors or treatment with a small molecule, which all inhibit 60S subunit biogenesis, are each sufficient to significantly increase replicative life span. One mechanism by which reduced 60S subunit levels leads to life span extension is through induction of Gcn4, a nutrient-responsive transcription factor. Genetic epistasis analyses suggest that dietary restriction, reduced 60S subunit abundance, and Gcn4 activation extend yeast life span by similar mechanisms.


Aging Cell | 2006

Lifespan extension in Caenorhabditis elegans by complete removal of food

Tammi L. Kaeberlein; Erica D. Smith; Mitsuhiro Tsuchiya; K. Linnea Welton; James H. Thomas; Stanley Fields; Brian K. Kennedy; Matt Kaeberlein

A partial reduction in food intake has been found to increase lifespan in many different organisms. We report here a new dietary restriction regimen in the nematode Caenorhabditis elegans, based on the standard agar plate lifespan assay, in which adult worms are maintained in the absence of a bacterial food source. These findings represent the first report in any organism of lifespan extension in response to prolonged starvation. Removal of bacterial food increases lifespan to a greater extent than partial reduction of food through a mechanism that is distinct from insulin/IGF‐like signaling and the Sir2‐family deacetylase, SIR‐2.1. Removal of bacterial food also increases lifespan when initiated in postreproductive adults, suggesting that dietary restriction started during middle age can result in a substantial longevity benefit that is independent of reproduction.


Genome Research | 2008

Quantitative evidence for conserved longevity pathways between divergent eukaryotic species

Erica D. Smith; Mitsuhiro Tsuchiya; Lindsay A. Fox; Nick Dang; Di Hu; Emily O. Kerr; Elijah D. Johnston; Bie N. Tchao; Diana N. Pak; K. Linnea Welton; Daniel E. L. Promislow; James H. Thomas; Matt Kaeberlein; Brian K. Kennedy

Studies in invertebrate model organisms have been a driving force in aging research, leading to the identification of many genes that influence life span. Few of these genes have been examined in the context of mammalian aging, however, and it remains an open question as to whether and to what extent the pathways that modulate longevity are conserved across different eukaryotic species. Using a comparative functional genomics approach, we have performed the first quantitative analysis of the degree to which longevity genes are conserved between two highly divergent eukaryotic species, the yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans. Here, we report the replicative life span phenotypes for single-gene deletions of the yeast orthologs of worm aging genes. We find that 15% of these yeast deletions are long-lived. In contrast, only 3.4% of a random set of deletion mutants are long-lived-a statistically significant difference. These data suggest that genes that modulate aging have been conserved not only in sequence, but also in function, over a billion years of evolution. Among the longevity determining ortholog pairs, we note a substantial enrichment for genes involved in an evolutionarily conserved pathway linking nutrient sensing and protein translation. In addition, we have identified several conserved aging genes that may represent novel longevity pathways. Together, these findings indicate that the genetic component of life span determination is significantly conserved between divergent eukaryotic species, and suggest pathways that are likely to play a similar role in mammalian aging.


PLOS Genetics | 2011

Elevated Proteasome Capacity Extends Replicative Lifespan in Saccharomyces cerevisiae

Undine Kruegel; Brett Robison; Thomas Dange; Günther Kahlert; Joe R. Delaney; Soumya Kotireddy; Mitsuhiro Tsuchiya; Scott Tsuchiyama; Christopher J. Murakami; Jennifer Schleit; George L. Sutphin; Daniel B. Carr; Krisztina Tar; Gunnar Dittmar; Matt Kaeberlein; Brian K. Kennedy; Marion Schmidt

Aging is characterized by the accumulation of damaged cellular macromolecules caused by declining repair and elimination pathways. An integral component employed by cells to counter toxic protein aggregates is the conserved ubiquitin/proteasome system (UPS). Previous studies have described an age-dependent decline of proteasomal function and increased longevity correlates with sustained proteasome capacity in centenarians and in naked mole rats, a long-lived rodent. Proof for a direct impact of enhanced proteasome function on longevity, however, is still lacking. To determine the importance of proteasome function in yeast aging, we established a method to modulate UPS capacity by manipulating levels of the UPS–related transcription factor Rpn4. While cells lacking RPN4 exhibit a decreased non-adaptable proteasome pool, loss of UBR2, an ubiquitin ligase that regulates Rpn4 turnover, results in elevated Rpn4 levels, which upregulates UPS components. Increased UPS capacity significantly enhances replicative lifespan (RLS) and resistance to proteotoxic stress, while reduced UPS capacity has opposing consequences. Despite tight transcriptional co-regulation of the UPS and oxidative detoxification systems, the impact of proteasome capacity on lifespan is independent of the latter, since elimination of Yap1, a key regulator of the oxidative stress response, does not affect lifespan extension of cells with higher proteasome capacity. Moreover, since elevated proteasome capacity results in improved clearance of toxic huntingtin fragments in a yeast model for neurodegenerative diseases, we speculate that the observed lifespan extension originates from prolonged elimination of damaged proteins in old mother cells. Epistasis analyses indicate that proteasome-mediated modulation of lifespan is at least partially distinct from dietary restriction, Tor1, and Sir2. These findings demonstrate that UPS capacity determines yeast RLS by a mechanism that is distinct from known longevity pathways and raise the possibility that interventions to promote enhanced proteasome function will have beneficial effects on longevity and age-related disease in humans.


PLOS ONE | 2008

Shortest-Path Network Analysis Is a Useful Approach toward Identifying Genetic Determinants of Longevity

J. R. Managbanag; Tarynn M. Witten; Danail Bonchev; Lindsay A. Fox; Mitsuhiro Tsuchiya; Brian K. Kennedy; Matt Kaeberlein

Background Identification of genes that modulate longevity is a major focus of aging-related research and an area of intense public interest. In addition to facilitating an improved understanding of the basic mechanisms of aging, such genes represent potential targets for therapeutic intervention in multiple age-associated diseases, including cancer, heart disease, diabetes, and neurodegenerative disorders. To date, however, targeted efforts at identifying longevity-associated genes have been limited by a lack of predictive power, and useful algorithms for candidate gene-identification have also been lacking. Methodology/Principal Findings We have utilized a shortest-path network analysis to identify novel genes that modulate longevity in Saccharomyces cerevisiae. Based on a set of previously reported genes associated with increased life span, we applied a shortest-path network algorithm to a pre-existing protein–protein interaction dataset in order to construct a shortest-path longevity network. To validate this network, the replicative aging potential of 88 single-gene deletion strains corresponding to predicted components of the shortest-path longevity network was determined. Here we report that the single-gene deletion strains identified by our shortest-path longevity analysis are significantly enriched for mutations conferring either increased or decreased replicative life span, relative to a randomly selected set of 564 single-gene deletion strains or to the current data set available for the entire haploid deletion collection. Further, we report the identification of previously unknown longevity genes, several of which function in a conserved longevity pathway believed to mediate life span extension in response to dietary restriction. Conclusions/Significance This work demonstrates that shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity and represents the first application of network analysis of aging to be extensively validated in a biological system. The novel longevity genes identified in this study are likely to yield further insight into the molecular mechanisms of aging and age-associated disease.


Aging Cell | 2006

Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast

Mitsuhiro Tsuchiya; Nick Dang; Emily O. Kerr; Di Hu; Kristan K. Steffen; Jonathan A. Oakes; Brian K. Kennedy; Matt Kaeberlein

Two models have been proposed for how calorie restriction (CR) enhances replicative longevity in yeast: (i) suppression of rDNA recombination through activation of the sirtuin protein deacetylase Sir2 or (ii) decreased activity of the nutrient‐responsive kinases Sch9 and TOR. We report here that CR increases lifespan independently of all Sir2‐family proteins in yeast. Furthermore, we demonstrate that nicotinamide, an inhibitor of Sir2‐mediated deacetylation, interferes with lifespan extension from CR, but does so independent of Sir2, Hst1, Hst2, and Hst4. We also find that 5 mm nicotinamide, a concentration sufficient to inhibit other sirtuins, does not phenocopy deletion of HST3. Thus, we propose that lifespan extension by CR is independent of sirtuins and that nicotinamide has sirtuin‐independent effects on lifespan extension by CR.


American Journal of Respiratory and Critical Care Medicine | 2008

Proteomic and Computational Analysis of Bronchoalveolar Proteins during the Course of the Acute Respiratory Distress Syndrome

Dong W. Chang; Shinichi Hayashi; Sina A. Gharib; Tomas Vaisar; S. Trevor King; Mitsuhiro Tsuchiya; John T. Ruzinski; David R. Park; Gustavo Matute-Bello; Mark M. Wurfel; Roger E. Bumgarner; Jay W. Heinecke; Thomas R. Martin

RATIONALE Acute lung injury causes complex changes in protein expression in the lungs. Whereas most prior studies focused on single proteins, newer methods allowing the simultaneous study of many proteins could lead to a better understanding of pathogenesis and new targets for treatment. OBJECTIVES The purpose of this study was to examine the changes in protein expression in the bronchoalveolar lavage fluid (BALF) of patients during the course of the acute respiratory distress syndrome (ARDS). METHODS Using two-dimensional difference gel electrophoresis (DIGE), the expression of proteins in the BALF from patients on Days 1 (n = 7), 3 (n = 8), and 7 (n = 5) of ARDS were compared with findings in normal volunteers (n = 9). The patterns of protein expression were analyzed using principal component analysis (PCA). Biological processes that were enriched in the BALF proteins of patients with ARDS were identified using Gene Ontology (GO) analysis. Protein networks that model the protein interactions in the BALF were generated using Ingenuity Pathway Analysis. MEASUREMENTS AND MAIN RESULTS An average of 991 protein spots were detected using DIGE. Of these, 80 protein spots, representing 37 unique proteins in all of the fluids, were identified using mass spectrometry. PCA confirmed important differences between the proteins in the ARDS and normal samples. GO analysis showed that these differences are due to the enrichment of proteins involved in inflammation, infection, and injury. The protein network analysis showed that the protein interactions in ARDS are complex and redundant, and revealed unexpected central components in the protein networks. CONCLUSIONS Proteomics and protein network analysis reveals the complex nature of lung protein interactions in ARDS. The results provide new insights about protein networks in injured lungs, and identify novel mediators that are likely to be involved in the pathogenesis and progression of acute lung injury.


PLOS Genetics | 2014

Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import.

Chong He; Scott Tsuchiyama; Quynh T. Nguyen; Ekaterina Plyusnina; Samuel R. Terrill; Sarah Sahibzada; Bhumil Patel; Alena R. Faulkner; Mikhail Shaposhnikov; Ruilin Tian; Mitsuhiro Tsuchiya; Matt Kaeberlein; Alexey Moskalev; Brian K. Kennedy; Michael Polymenis

The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.


Aging Cell | 2011

Sir2 deletion prevents lifespan extension in 32 long-lived mutants

Joe R. Delaney; George L. Sutphin; Ben Dulken; Sylvia Sim; Jin R. Kim; Brett Robison; Jennifer Schleit; Christopher J. Murakami; Daniel B. Carr; Elroy H. An; Eunice Choi; Annie Chou; Marissa Fletcher; Monika Jelic; Bin Liu; Daniel Lockshon; Diana N. Pak; Qi Peng; Zhao J. Peng; Kim M. Pham; Michael Sage; Amrita Solanky; Kristan K. Steffen; Mitsuhiro Tsuchiya; Scott Tsuchiyama; Simon C. Johnson; Chris Raabe; Yousin Suh; Zhongjun Zhou; Xinguang Liu

Activation of Sir2 orthologs is proposed to increase lifespan downstream of dietary restriction. Here, we describe an examination of the effect of 32 different lifespan‐extending mutations and four methods of DR on replicative lifespan (RLS) in the short‐lived sir2Δ yeast strain. In every case, deletion of SIR2 prevented RLS extension; however, RLS extension was restored when both SIR2 and FOB1 were deleted in several cases, demonstrating that SIR2 is not directly required for RLS extension. These findings indicate that suppression of the sir2Δ lifespan defect is a rare phenotype among longevity interventions and suggest that sir2Δ cells senesce rapidly by a mechanism distinct from that of wild‐type cells. They also demonstrate that failure to observe lifespan extension in a short‐lived background, such as cells or animals lacking sirtuins, should be interpreted with caution.


PLOS Genetics | 2015

Proteasomes, Sir2, and Hxk2 form an interconnected aging network that impinges on the AMPK/Snf1-regulated transcriptional repressor Mig1.

Yanhua Yao; Scott Tsuchiyama; Ciyu Yang; Anne Laure Bulteau; Chong He; Brett Robison; Mitsuhiro Tsuchiya; Delana Miller; Valeria Briones; Krisztina Tar; Anahi Potrero; Bertrand Friguet; Brian K. Kennedy; Marion Schmidt

Elevated proteasome activity extends lifespan in model organisms such as yeast, worms and flies. This pro-longevity effect might be mediated by improved protein homeostasis, as this protease is an integral module of the protein homeostasis network. Proteasomes also regulate cellular processes through temporal and spatial degradation of signaling pathway components. Here we demonstrate that the regulatory function of the proteasome plays an essential role in aging cells and that the beneficial impact of elevated proteasome capacity on lifespan partially originates from deregulation of the AMPK signaling pathway. Proteasome-mediated lifespan extension activity was carbon-source dependent and cells with enhancement proteasome function exhibited increased respiratory activity and oxidative stress response. These findings suggested that the pro-aging impact of proteasome upregulation might be related to changes in the metabolic state through a premature induction of respiration. Deletion of yeast AMPK, SNF1, or its activator SNF4 abrogated proteasome-mediated lifespan extension, supporting this hypothesis as the AMPK pathway regulates metabolism. We found that the premature induction of respiration in cells with increased proteasome activity originates from enhanced turnover of Mig1, an AMPK/Snf1 regulated transcriptional repressor that prevents the induction of genes required for respiration. Increasing proteasome activity also resulted in partial relocation of Mig1 from the nucleus to the mitochondria. Collectively, the results argue for a model in which elevated proteasome activity leads to the uncoupling of Snf1-mediated Mig1 regulation, resulting in a premature activation of respiration and thus the induction of a mitohormetic response, beneficial to lifespan. In addition, we observed incorrect Mig1 localization in two other long-lived yeast aging models: cells that overexpress SIR2 or deleted for the Mig1-regulator HXK2. Finally, compromised proteasome function blocks lifespan extension in both strains. Thus, our findings suggest that proteasomes, Sir2, Snf1 and Hxk2 form an interconnected aging network that controls metabolism through coordinated regulation of Mig1.

Collaboration


Dive into the Mitsuhiro Tsuchiya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Dang

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Emily O. Kerr

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Scott Tsuchiyama

Buck Institute for Research on Aging

View shared research outputs
Top Co-Authors

Avatar

Di Hu

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Lindsay A. Fox

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Diana N. Pak

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanley Fields

University of Washington

View shared research outputs
Researchain Logo
Decentralizing Knowledge