Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuko Hayashi-Nishino is active.

Publication


Featured researches published by Mitsuko Hayashi-Nishino.


Nature Cell Biology | 2009

A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation

Mitsuko Hayashi-Nishino; Naonobu Fujita; Takeshi Noda; Akihito Yamaguchi; Tamotsu Yoshimori; Akitsugu Yamamoto

Autophagy is a bulk degradation process in eukaryotic cells and has fundamental roles in cellular homeostasis.The origin and source of autophagosomal membranes are long-standing questions in the field. Using electron microscopy, we show that, in mammalian culture cells, the endoplasmic reticulum (ER) associates with early autophagic structures called isolation membranes (IMs). Overexpression of an Atg4B mutant, which causes defects in autophagosome formation, induces the accumulation of ER–IM complexes. Electron tomography revealed that the ER–IM complex appears as a subdomain of the ER that formed a cradle encircling the IM, and showed that both ER and isolation membranes are interconnected.


Molecular Biology of the Cell | 2008

An Atg4B Mutant Hampers the Lipidation of LC3 Paralogues and Causes Defects in Autophagosome Closure

Naonobu Fujita; Mitsuko Hayashi-Nishino; Hiromi Fukumoto; Hiroko Omori; Akitsugu Yamamoto; Takeshi Noda; Tamotsu Yoshimori

In the process of autophagy, a ubiquitin-like molecule, LC3/Atg8, is conjugated to phosphatidylethanolamine (PE) and associates with forming autophagosomes. In mammalian cells, the existence of multiple Atg8 homologues (referred to as LC3 paralogues) has hampered genetic analysis of the lipidation of LC3 paralogues. Here, we show that overexpression of an inactive mutant of Atg4B, a protease that processes pro-LC3 paralogues, inhibits autophagic degradation and lipidation of LC3 paralogues. Inhibition was caused by sequestration of free LC3 paralogues in stable complexes with the Atg4B mutant. In mutant overexpressing cells, Atg5- and ULK1-positive intermediate autophagic structures accumulated. The length of these membrane structures was comparable to that in control cells; however, a significant number were not closed. These results show that the lipidation of LC3 paralogues is involved in the completion of autophagosome formation in mammalian cells. This study also provides a powerful tool for a wide variety of studies of autophagy in the future.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection

Hua Niu; Qingming Xiong; Akitsugu Yamamoto; Mitsuko Hayashi-Nishino; Yasuko Rikihisa

Autophagy, a cytoplasmic catabolic process, plays a critical role in defense against intracellular infection. In turn, evasion or inhibition of autophagy has emerged as an important virulence factor for intracellular pathogens. However, Anaplasma phagocytophilum, the obligatory intracellular bacterium that causes human granulocytic anaplasmosis, replicates in the membrane-bound compartment resembling early autophagosome. Here, we found that Anaplasma translocated substrate 1 (Ats-1), a type IV secretion effector, binds Beclin 1, a subunit of the class III PI3K and Atg14L, and it nucleates autophagosomes with markers of omegasomes, double FYVE-containing protein 1, Atg14L, and LC3. Ats-1 autophagy induction did not activate the starvation signaling pathway of mammalian target of rapamycin. These autophagy proteins were also localized to the Anaplasma inclusion. Ectopically expressed Ats-1 targeted the Anaplasma inclusions and enhanced infection, whereas host cytoplasmic delivery of anti–Ats-1 or Beclin 1 depletion by siRNA suppressed the infection; beclin 1 heterozygous-deficient mice were resistant to Anaplasma infection. Furthermore, Anaplasma growth arrest by the class III PI3K inhibitor 3-methyladenine was alleviated by essential amino acid supplementation. Thus, Anaplasma actively induces autophagy by secreting Ats-1 that hijacks the Beclin 1-Atg14L autophagy initiation pathway likely to acquire host nutrients for its growth.


Autophagy | 2010

Electron tomography reveals the endoplasmic reticulum as a membrane source for autophagosome formation.

Mitsuko Hayashi-Nishino; Naonobu Fujita; Takeshi Noda; Akihito Yamaguchi; Tamotsu Yoshimori; Akitsugu Yamamoto

The origin and source of autophagosomal membranes are long-standing questions. By electron microscopy, we show that the endoplasmic reticulum (ER) associates with early autophagic structures called isolation membranes (IM) or phagophores in mammalian culture cells. Overexpression of a mutant of Atg4B, which causes defects in autophagosome formation, caused accumulation of ER-IM complexes. Electron tomography revealed the ER-IM complex as a subdomain of the ER forming a cradle encircling the IM, and showed that both ER and isolation membranes are interconnected.


Journal of Antimicrobial Chemotherapy | 2010

Impact of the RNA chaperone Hfq on multidrug resistance in Escherichia coli

Junko Yamada; Seiji Yamasaki; Hidetada Hirakawa; Mitsuko Hayashi-Nishino; Akihito Yamaguchi; Kunihiko Nishino

OBJECTIVES Hfq is a bacterial RNA chaperone involved in the post-transcriptional regulation of many stress-inducible genes via small non-coding RNAs. Although Hfq is related to important phenotypes including virulence in many bacterial pathogens, its role in drug resistance is unknown. The aim of this study was to investigate the role of Hfq in bacterial multidrug resistance. METHODS The hfq gene was inactivated in Escherichia coli by use of pKO3, which is a gene replacement vector. The drug susceptibility and drug accumulation of the hfq mutant were determined. The level of production of the AcrB multidrug efflux pump in this mutant was also measured. RESULTS The hfq mutant was susceptible to acriflavine, benzalkonium, cefamandole, chloramphenicol, Crystal Violet, nalidixic acid, novobiocin, oxacillin and rhodamine 6G. E. coli cells were strongly stained with rhodamine 6G compared with the wild-type on deletion of hfq, indicating that Hfq affects the accumulation of the drug in bacterial cells. The deletion of the drug efflux gene acrB impairs the effect of hfq deletion on E. coli susceptibility. Furthermore, the level of AcrB protein production was reduced in the hfq mutant, whereas hfq deletion did not affect the promoter activity of the acrAB operon. CONCLUSIONS These results indicate that Hfq regulates the drug efflux system at the post-transcriptional level and reveals the previously uncharacterized role of Hfq in bacterial multidrug resistance.


Antimicrobial Agents and Chemotherapy | 2010

Effect of NlpE Overproduction on Multidrug Resistance in Escherichia coli

Kunihiko Nishino; Seiji Yamasaki; Mitsuko Hayashi-Nishino; Akihito Yamaguchi

ABSTRACT NlpE, an outer membrane lipoprotein, functions during envelope stress responses in Gram-negative bacteria. In this study, we report that overproduction of NlpE increases multidrug and copper resistance through activation of the genes encoding the AcrD and MdtABC multidrug efflux pumps in Escherichia coli.


Microbial Pathogenesis | 2010

Indole enhances acid resistance in Escherichia coli

Hidetada Hirakawa; Mitsuko Hayashi-Nishino; Akihito Yamaguchi; Kunihiko Nishino

As a stationary-phase signal, indole is secreted in large quantities by Escherichia coli on enriched media and has been shown to control several genes; however, its impact on acid resistance remains to be studied in detail. Real-time quantitative reverse transcription-polymerase chain reaction analysis revealed that indole increases the expression of the glutamine decarboxylase system that includes genes such as gadA, gadB, and gadC genes with no effect on the expression of other acid resistance systems such as arginine decarboxylase (adiA) and lysine decarboxylase (cadA, cadB, cadC, and ldcC). Indole also induces yhiE (gadE) that encodes the regulator required for expression of gadA, gadB, and gadC. These results suggest that indole enhances the survival of E. coli under acidic conditions by increasing the expression of acid resistance genes of the glutamine decarboxylase system, thus increasing its acid resistance.


Journal of Antimicrobial Chemotherapy | 2011

Effect of overexpression of small non-coding DsrA RNA on multidrug efflux in Escherichia coli

Kunihiko Nishino; Seiji Yamasaki; Mitsuko Hayashi-Nishino; Akihito Yamaguchi

OBJECTIVES Several putative and proven drug efflux pumps are present in Escherichia coli. Because many such efflux pumps have overlapping substrate spectra, it is intriguing that bacteria, with their economically organized genomes, harbour such large sets of multidrug efflux genes. To understand how bacteria utilize these multiple efflux pumps, it is important to elucidate the process of pump expression regulation. The aim of this study was to determine a regulator of the multidrug efflux pump in this organism. METHODS We screened a genomic library of E. coli for genes that decreased drug susceptibility in this organism. The library was developed from the chromosomal DNA of the MG1655 strain, and then the recombinant plasmids were transformed into an acrB-deleted strain. Transformants were screened for resistance to various antibiotics including oxacillin. RESULTS We found that the multidrug susceptibilities of the acrB-deleted strain were decreased by the overexpression of small non-coding DsrA RNA as well as by the overexpression of known regulators of multidrug efflux pumps. Plasmids carrying the dsrA gene conferred resistance to oxacillin, cloxacillin, erythromycin, rhodamine 6G and novobiocin. DsrA decreased the accumulation of ethidium bromide in E. coli cells. Furthermore, expression of mdtE was significantly increased by dsrA overexpression, and the decreased multidrug susceptibilities modulated by DsrA were dependent on the MdtEF efflux pump. CONCLUSIONS These results indicate that DsrA modulates multidrug efflux through activation of genes encoding the MdtEF pump in E. coli.


Antimicrobial Agents and Chemotherapy | 2009

H-NS Modulates Multidrug Resistance of Salmonella enterica Serovar Typhimurium by Repressing Multidrug Efflux Genes acrEF

Kunihiko Nishino; Mitsuko Hayashi-Nishino; Akihito Yamaguchi

ABSTRACT Screening of Salmonella mutants for the ability to increase β-lactam resistance has led to the identification of a mutation in hns, which codes for the histone-like nucleoid structuring protein (H-NS). In this study, we report that H-NS modulates multidrug resistance through repression of the genes that encode the AcrEF multidrug efflux pump in Salmonella enterica serovar Typhimurium.


The Journal of Antibiotics | 2009

Role of the AraC-XylS family regulator YdeO in multi-drug resistance of Escherichia coli.

Kunihiko Nishino; Yasuko Senda; Mitsuko Hayashi-Nishino; Akihito Yamaguchi

Multi-drug efflux pumps contribute to the resistance of Escherichia coli to many antibiotics and biocides. In this study, we report that the AraC–XylS family regulator YdeO increases the multi-drug resistance of E. coli through activation of the MdtEF efflux pump. Screening of random fragments of genomic DNA for their ability to increase β-lactam resistance led to the isolation of a plasmid containing ydeO, which codes for the regulator of acid resistance. When overexpressed, ydeO significantly increased the resistance of the E. coli strain to oxacillin, cloxacillin, nafcillin, erythromycin, rhodamine 6G and sodium dodecyl sulfate. The increase in drug resistance caused by ydeO overexpression was completely suppressed by deleting the multifunctional outer membrane channel gene tolC. TolC interacts with different drug efflux pumps. Quantitative real-time PCR showed that YdeO activated only mdtEF expression and none of the other drug efflux pumps in E. coli. Deletion of mdtEF completely suppressed the YdeO-mediated multi-drug resistance. YdeO enhances the MdtEF-dependent drug efflux activity in E. coli. Our results indicate that the YdeO regulator, in addition to its role in acid resistance, increases the multi-drug resistance of E. coli by activating the MdtEF multi-drug efflux pump.

Collaboration


Dive into the Mitsuko Hayashi-Nishino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akitsugu Yamamoto

Nagahama Institute of Bio-Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge