Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuko Nakashima is active.

Publication


Featured researches published by Mitsuko Nakashima.


Nature Genetics | 2013

De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood.

Hirotomo Saitsu; Taki Nishimura; Kazuhiro Muramatsu; Hirofumi Kodera; Satoko Kumada; Kenji Sugai; Emi Kasai-Yoshida; Noriko Sawaura; Hiroya Nishida; Ai Hoshino; Fukiko Ryujin; Seiichiro Yoshioka; Kiyomi Nishiyama; Yukiko Kondo; Yoshinori Tsurusaki; Mitsuko Nakashima; Noriko Miyake; Hirokazu Arakawa; Mitsuhiro Kato; Noboru Mizushima; Naomichi Matsumoto

Static encephalopathy of childhood with neurodegeneration in adulthood (SENDA) is a recently established subtype of neurodegeneration with brain iron accumulation (NBIA). By exome sequencing, we found de novo heterozygous mutations in WDR45 at Xp11.23 in two individuals with SENDA, and three additional WDR45 mutations were identified in three other subjects by Sanger sequencing. Using lymphoblastoid cell lines (LCLs) derived from the subjects, aberrant splicing was confirmed in two, and protein expression was observed to be severely impaired in all five. WDR45 encodes WD-repeat domain 45 (WDR45). WDR45 (also known as WIPI4) is one of the four mammalian homologs of yeast Atg18, which has an important role in autophagy. Lower autophagic activity and accumulation of aberrant early autophagic structures were demonstrated in the LCLs of the affected subjects. These findings provide direct evidence that an autophagy defect is indeed associated with a neurodegenerative disorder in humans.


Nature Genetics | 2006

A SNP in the ABCC11 gene is the determinant of human earwax type

Koh-ichiro Yoshiura; Akira Kinoshita; Takafumi Ishida; Aya Ninokata; Toshihisa Ishikawa; Tadashi Kaname; Makoto Bannai; Katsushi Tokunaga; Shunro Sonoda; Ryoichi Komaki; Makoto Ihara; Vladimir Saenko; Gabit Alipov; Ichiro Sekine; Kazuki Komatsu; Haruo Takahashi; Mitsuko Nakashima; Nadiya Sosonkina; Christophe K. Mapendano; Mohsen Ghadami; Masayo Nomura; Desheng Liang; Nobutomo Miwa; Dae-Kwang Kim; Ariuntuul Garidkhuu; Nagato Natsume; Tohru Ohta; Hiroaki Tomita; Akira Kaneko; Mihoko Kikuchi

Human earwax consists of wet and dry types. Dry earwax is frequent in East Asians, whereas wet earwax is common in other populations. Here we show that a SNP, 538G → A (rs17822931), in the ABCC11 gene is responsible for determination of earwax type. The AA genotype corresponds to dry earwax, and GA and GG to wet type. A 27-bp deletion in ABCC11 exon 29 was also found in a few individuals of Asian ancestry. A functional assay demonstrated that cells with allele A show a lower excretory activity for cGMP than those with allele G. The allele A frequency shows a north-south and east-west downward geographical gradient; worldwide, it is highest in Chinese and Koreans, and a common dry-type haplotype is retained among various ethnic populations. These suggest that the allele A arose in northeast Asia and thereafter spread through the world. The 538G → A SNP is the first example of DNA polymorphism determining a visible genetic trait.


Neurology | 2013

Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome

Kazuyuki Nakamura; Mitsuhiro Kato; Hitoshi Osaka; Sumimasa Yamashita; Eiji Nakagawa; Kazuhiro Haginoya; Jun Tohyama; Mitsuko Okuda; Takahito Wada; Shuichi Shimakawa; Katsumi Imai; Saoko Takeshita; Hisako Ishiwata; Dorit Lev; Tally Lerman-Sagie; David E. Cervantes-Barragán; Camilo E. Villarroel; Masaharu Ohfu; Karin Writzl; Barbara Gnidovec Stražišar; Shinichi Hirabayashi; David Chitayat; Diane Myles Reid; Kiyomi Nishiyama; Hirofumi Kodera; Mitsuko Nakashima; Yoshinori Tsurusaki; Noriko Miyake; Kiyoshi Hayasaka; Naomichi Matsumoto

Objective: We aimed to investigate the possible association between SCN2A mutations and early-onset epileptic encephalopathies (EOEEs). Methods: We recruited a total of 328 patients with EOEE, including 67 patients with Ohtahara syndrome (OS) and 150 with West syndrome. SCN2A mutations were examined using high resolution melt analysis or whole exome sequencing. Results: We found 14 novel SCN2A missense mutations in 15 patients: 9 of 67 OS cases (13.4%), 1 of 150 West syndrome cases (0.67%), and 5 of 111 with unclassified EOEEs (4.5%). Twelve of the 14 mutations were confirmed as de novo, and all mutations were absent in 212 control exomes. A de novo mosaic mutation (c.3976G>C) with a mutant allele frequency of 18% was detected in one patient. One mutation (c.634A>G) was found in transcript variant 3, which is a neonatal isoform. All 9 mutations in patients with OS were located in linker regions between 2 transmembrane segments. In 7 of the 9 patients with OS, EEG findings transitioned from suppression-burst pattern to hypsarrhythmia. All 15 of the patients with novel SCN2A missense mutations had intractable seizures; 3 of them were seizure-free at the last medical examination. All patients showed severe developmental delay. Conclusions: Our study confirmed that SCN2A mutations are an important genetic cause of OS. Given the wide clinical spectrum associated with SCN2A mutations, genetic testing for SCN2A should be considered for children with different epileptic conditions.


Epilepsia | 2013

Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation.

Mitsuhiro Kato; Takanori Yamagata; Masaya Kubota; Hiroshi Arai; Sumimasa Yamashita; Taku Nakagawa; Takanari Fujii; Kenji Sugai; Kaoru Imai; Tami Uster; David Chitayat; Shelly K. Weiss; Hirofumi Kashii; Ryosuke Kusano; Ayumi Matsumoto; Kazuyuki Nakamura; Yoshinobu Oyazato; Mari Maeno; Kiyomi Nishiyama; Hirofumi Kodera; Mitsuko Nakashima; Yoshinori Tsurusaki; Noriko Miyake; Kayoko Saito; Kiyoshi Hayasaka; Naomichi Matsumoto; Hirotomo Saitsu

KCNQ2 mutations have been found in patients with benign familial neonatal seizures, myokymia, or early onset epileptic encephalopathy (EOEE). In this study, we aimed to delineate the clinical spectrum of EOEE associated with KCNQ2 mutation.


Human Mutation | 2013

KDM6A Point Mutations Cause Kabuki Syndrome

Noriko Miyake; Seiji Mizuno; Nobuhiko Okamoto; Hirofumi Ohashi; Masaaki Shiina; Kazuhiro Ogata; Yoshinori Tsurusaki; Mitsuko Nakashima; Hirotomo Saitsu; Norio Niikawa; Naomichi Matsumoto

Kabuki syndrome (KS) is a rare congenital anomaly syndrome characterized by a unique facial appearance, growth retardation, skeletal abnormalities, and intellectual disability. In 2010, MLL2 was identified as a causative gene. On the basis of published reports, 55–80% of KS cases can be explained by MLL2 abnormalities. Recently, de novo deletion of KDM6A has been reported in three KS patients, but point mutations of KDM6A have never been found. In this study, we investigated KDM6A in 32 KS patients without an MLL2 mutation. We identified two nonsense mutations and one 3‐bp deletion of KDM6A in three KS cases. This is the first report of KDM6A point mutations associated with KS.


Nature Genetics | 2010

A genome-wide association study identifies four susceptibility loci for keloid in the Japanese population

Mitsuko Nakashima; Suyoun Chung; Atsushi Takahashi; Naoyuki Kamatani; Takahisa Kawaguchi; Tatsuhiko Tsunoda; Naoya Hosono; Michiaki Kubo; Yusuke Nakamura; Hitoshi Zembutsu

Keloid is a dermal fibroproliferative growth that results from dysfunction of the wound healing processes. Through a multistage genome-wide association study using 824 individuals with keloid (cases) and 3,205 unaffected controls in the Japanese population, we identified significant associations of keloid with four SNP loci in three chromosomal regions: 1q41, 3q22.3–23 and 15q21.3. The most significant association with keloid was observed at rs873549 (combined P = 5.89 × 10−23, odds ratio (OR) = 1.77) on chromosome 1. Associations on chromosome 3 were observed at two separate linkage disequilibrium (LD) blocks: rs1511412 in the LD block including FOXL2 with P = 2.31 × 10−13 (OR = 1.87) and rs940187 in another LD block with P = 1.80 × 10−13 (OR = 1.98). Association of rs8032158 located in NEDD4 on chromosome 15 yielded P = 5.96 × 10−13 (OR = 1.51). Our findings provide new insights into the pathophysiology of keloid formation.


Journal of Human Genetics | 2016

Human genetic variation database, a reference database of genetic variations in the Japanese population

Koichiro Higasa; Noriko Miyake; Jun Yoshimura; Kohji Okamura; Tetsuya Niihori; Hirotomo Saitsu; Koichiro Doi; Masakazu Shimizu; Kazuhiko Nakabayashi; Yoko Aoki; Yoshinori Tsurusaki; Shinichi Morishita; Takahisa Kawaguchi; Osuke Migita; Keiko Nakayama; Mitsuko Nakashima; Jun Mitsui; Maiko Narahara; Keiko Hayashi; Ryo Funayama; Daisuke Yamaguchi; Hiroyuki Ishiura; Wen Ya Ko; Kenichiro Hata; Takeshi Nagashima; Ryo Yamada; Yoichi Matsubara; Akihiro Umezawa; Shoji Tsuji; Naomichi Matsumoto

Whole-genome and -exome resequencing using next-generation sequencers is a powerful approach for identifying genomic variations that are associated with diseases. However, systematic strategies for prioritizing causative variants from many candidates to explain the disease phenotype are still far from being established, because the population-specific frequency spectrum of genetic variation has not been characterized. Here, we have collected exomic genetic variation from 1208 Japanese individuals through a collaborative effort, and aggregated the data into a prevailing catalog. In total, we identified 156 622 previously unreported variants. The allele frequencies for the majority (88.8%) were lower than 0.5% in allele frequency and predicted to be functionally deleterious. In addition, we have constructed a Japanese-specific major allele reference genome by which the number of unique mapping of the short reads in our data has increased 0.045% on average. Our results illustrate the importance of constructing an ethnicity-specific reference genome for identifying rare variants. All the collected data were centralized to a newly developed database to serve as useful resources for exploring pathogenic variations. Public access to the database is available at http://www.genome.med.kyoto-u.ac.jp/SnpDB/.


Annals of Neurology | 2015

Somatic Mutations in the MTOR gene cause focal cortical dysplasia type IIb

Mitsuko Nakashima; Hirotomo Saitsu; Nobuyuki Takei; Jun Tohyama; Mitsuhiro Kato; Hiroki Kitaura; Masaaki Shiina; Hiroshi Shirozu; Hiroshi Masuda; Keisuke Watanabe; Chihiro Ohba; Yoshinori Tsurusaki; Noriko Miyake; Yingjun Zheng; Tatsuhiro Sato; Hirohide Takebayashi; Kazuhiro Ogata; Shigeki Kameyama; Akiyoshi Kakita; Naomichi Matsumoto

Focal cortical dysplasia (FCD) type IIb is a cortical malformation characterized by cortical architectural abnormalities, dysmorphic neurons, and balloon cells. It has been suggested that FCDs are caused by somatic mutations in cells in the developing brain. Here, we explore the possible involvement of somatic mutations in FCD type IIb.


American Journal of Medical Genetics Part A | 2013

MLL2 and KDM6A mutations in patients with Kabuki syndrome

Noriko Miyake; Eriko Koshimizu; Nobuhiko Okamoto; Seiji Mizuno; Tsutomu Ogata; Toshiro Nagai; Tomoki Kosho; Hirofumi Ohashi; Mitsuhiro Kato; Goro Sasaki; Hiroyo Mabe; Yoriko Watanabe; Makoto Yoshino; Toyojiro Matsuishi; Jun-ichi Takanashi; Vorasuk Shotelersuk; Mustafa Tekin; Nobuhiko Ochi; Masaya Kubota; Naoko Ito; Kenji Ihara; Toshiro Hara; Hidefumi Tonoki; Tohru Ohta; Kayoko Saito; Mari Matsuo; Mari Urano; Takashi Enokizono; Astushi Sato; Hiroyuki Tanaka

Kabuki syndrome is a congenital anomaly syndrome characterized by developmental delay, intellectual disability, specific facial features including long palpebral fissures and ectropion of the lateral third of the lower eyelids, prominent digit pads, and skeletal and visceral abnormalities. Mutations in MLL2 and KDM6A cause Kabuki syndrome. We screened 81 individuals with Kabuki syndrome for mutations in these genes by conventional methods (n = 58) and/or targeted resequencing (n = 45) or whole exome sequencing (n = 5). We identified a mutation in MLL2 or KDM6A in 50 (61.7%) and 5 (6.2%) cases, respectively. Thirty‐five MLL2 mutations and two KDM6A mutations were novel. Non‐protein truncating‐type MLL2 mutations were mainly located around functional domains, while truncating‐type mutations were scattered through the entire coding region. The facial features of patients in the MLL2 truncating‐type mutation group were typical based on those of the 10 originally reported patients with Kabuki syndrome; those of the other groups were less typical. High arched eyebrows, short fifth finger, and hypotonia in infancy were more frequent in the MLL2 mutation group than in the KDM6A mutation group. Short stature and postnatal growth retardation were observed in all individuals with KDM6A mutations, but in only half of the group with MLL2 mutations.


Epilepsia | 2014

Early onset epileptic encephalopathy caused by de novo SCN8A mutations.

Chihiro Ohba; Mitsuhiro Kato; Satoru Takahashi; Tally Lerman-Sagie; Dorit Lev; Hiroshi Terashima; Masaya Kubota; Hisashi Kawawaki; Mayumi Matsufuji; Yasuko Kojima; Akihiko Tateno; Hadassa Goldberg-Stern; Rachel Straussberg; Dafna Marom; Esther Leshinsky-Silver; Mitsuko Nakashima; Kiyomi Nishiyama; Yoshinori Tsurusaki; Noriko Miyake; Fumiaki Tanaka; Naomichi Matsumoto; Hirotomo Saitsu

De novo SCN8A mutations have been reported in patients with epileptic encephalopathy. Herein we report seven patients with de novo heterozygous SCN8A mutations, which were found in our comprehensive genetic analysis (target capture or whole‐exome sequencing) for early onset epileptic encephalopathies (EOEEs).

Collaboration


Dive into the Mitsuko Nakashima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noriko Miyake

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuhiko Okamoto

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Kazuhiro Ogata

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Masaaki Shiina

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge