Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuru Horiba is active.

Publication


Featured researches published by Mitsuru Horiba.


Journal of Clinical Investigation | 2000

Neointima formation in a restenosis model is suppressed in midkine-deficient mice

Mitsuru Horiba; Kenji Kadomatsu; Eishin Nakamura; Hisako Muramatsu; Shinya Ikematsu; Sadatoshi Sakuma; Kenji Hayashi; Yukio Yuzawa; Seiichi Matsuo; Masafumi Kuzuya; Tadashi Kaname; Makoto Hirai; Hidehiko Saito; Takashi Muramatsu

Neointima formation is a common feature of atherosclerosis and restenosis after balloon angioplasty. To find a new target to suppress neointima formation, we investigated the possible role of midkine (MK), a heparin-binding growth factor with neurotrophic and chemotactic activities, in neointima formation. MK expression increased during neointima formation caused by intraluminal balloon injury of the rat carotid artery. Neointima formation in a restenosis model was strongly suppressed in MK-deficient mice. Continuous administration of MK protein to MK-deficient mice restored neointima formation. Leukocyte recruitment to the vascular walls after injury was markedly decreased in MK-deficient mice. Soluble MK as well as that bound to the substratum induced migration of macrophages in vitro. These results indicate that MK plays a critical role in neointima formation at least in part owing to its ability to mediate leukocyte recruitment.


Genes to Cells | 1998

Disruption of the midkine gene (Mdk) resulted in altered expression of a calcium binding protein in the hippocampus of infant mice and their abnormal behaviour

Eishin Nakamura; Kenji Kadomatsu; Shigeki Yuasa; Hisako Muramatsu; Takayoshi Mamiya; Toshitaka Nabeshima; Qi-Wen Fan; Kazuhiro Ishiguro; Tadahiko Igakura; Shuichiro Matsubara; Tadashi Kaname; Mitsuru Horiba; Hidehiko Saito; Takashi Muramatsu

Midkine (MK) is a growth factor implicated in the development and repair of various tissues, especially neural tissues. However, its in vivo function has not been clarified.


Circulation | 2006

Midkine Plays a Protective Role Against Cardiac Ischemia/Reperfusion Injury Through a Reduction of Apoptotic Reaction

Mitsuru Horiba; Kenji Kadomatsu; Kenji Yasui; Jong-Kook Lee; Hiroharu Takenaka; Arihiro Sumida; Kaichiro Kamiya; Sen Chen; Sadatoshi Sakuma; Takashi Muramatsu; Itsuo Kodama

Background— Midkine (MK) is a heparin-binding growth factor involved in diverse biological phenomena, eg, neural survival, carcinogenesis, and tissue repair. MK could have a protective action against ischemia/reperfusion (I/R) injury in the heart, because MK was shown to have cytoprotective activity in cultured neurons and tumor cells. We investigated this hypothesis in mice with and without genetic MK deletion. Methods and Results— Myocardial injury after I/R was produced by transient occlusion of coronary arteries. In wild-type (Mdk+/+) mice, MK expression was increased after I/R in the periinfarct area. Infarct size/area at risk 24 hours after I/R in MK-deficient (Mdk−/−) mice was larger than in Mdk+/+ mice (55.4±9.1% versus 32.1±5.3%, P<0.05). Terminal dUTP nick end-labeling–positive myocyte population in the periinfarct area in Mdk−/− mice was higher than in Mdk+/+ mice (6.8±0.9% versus 3.2±0.6%, P<0.05). Left ventricular fractional shortening 24 hours after I/R in Mdk−/− mice was significantly less than that in Mdk+/+ mice (34.3±4.4% versus 50.8±2.1%, P<0.05). Supplemental application of MK protein to left ventricle of Mdk−/− mice at the time of I/R resulted in reduction of the infarct size. Application of exogenous MK to cultured cardiomyocytes resulted in increased Bcl-2 expression and decreased apoptosis after hypoxia/reoxygenation. Conclusions— These results suggest that MK plays a protective role against I/R injury, most likely through a prevention of apoptotic reaction. MK is a potentially important new molecular target for treatment of ischemic heart disease.


Journal of Molecular and Cellular Cardiology | 2003

Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion

Atsuo Maekawa; Jong-Kook Lee; Takashi Nagaya; Kaichiro Kamiya; Kenji Yasui; Mitsuru Horiba; Keiko Miwa; Mahmud Uzzaman; Masatoshi Maki; Yuichi Ueda; Itsuo Kodama

Calpain is a Ca(2+)-activated neutral protease that supposedly plays a key role in myocardial dysfunction following ischemia/reperfusion, by degrading certain proteins involved in the contraction mechanism. It is possible that overexpression of calpastatin, an endogenous calpain inhibitor, lessens contractile dysfunction in the heart after reperfusion by preventing cardiac troponin I (TnI) degradation. This claim is tested by overexpression of human calpastatin (hCS) in rat hearts ex vivo using an adenovirus vector; the hearts were transplanted heterotopically into the abdomens of recipient rats to allow expression of hCS. On the fourth day after surgery, the hearts were excised and perfused in vitro to study their recovery from 30 min of global ischemia, which was followed by 60 min of reperfusion. The peak recovery of the left ventricular developed pressure (LVDP), and the values of its first derivative (max dP/dt, min dP/dt) in the hCS-overexpressed hearts were 88.9 +/- 4.8%, 90.8 +/- 9.2% and 106.4 +/- 9.8%, respectively; these values were all significantly greater than in the control hearts transfected with LacZ alone (51.4 +/- 6.9%, 52.6 +/- 8.1% and 54.7 +/- 6.6%, P < 0.05). In western blot analysis of ventricular myocardial samples (at 60-min reperfusion) using a monoclonal anti-TnI antibody, two bands corresponding to intact TnI (30 kDa) and TnI fragments (27 kDa) were distinguished. The fraction of 27-kDa TnI (percent of total TnI immunoreactivity) in hCS-overexpressed hearts was significantly less than the controls (5.7 +/- 2.7% vs. 18.1 +/- 3.2%, P < 0.05), implying a protective action of hCS against TnI degradation. These results suggest that adenovirus-mediated overexpression of hCS in the heart could be a novel biological means to minimize myocardial stunning by ischemia/reperfusion.


Life Sciences | 2008

T-type Ca2+ channel blockers prevent cardiac cell hypertrophy through an inhibition of calcineurin-NFAT3 activation as well as L-type Ca2+ channel blockers

Mitsuru Horiba; Takao Muto; Norihiro Ueda; Tobias Opthof; Keiko Miwa; Mayumi Hojo; Jong-Kook Lee; Kaichiro Kamiya; Itsuo Kodama; Kenji Yasui

T-type Ca2+ channels (TCCs) are involved in cardiac cell growth and proliferation in cultured cardiomyocytes. Underlying molecular mechanisms are not well understood. In this study, we investigated the role of TCCs in signal transduction in cardiac hypertrophy compared with L-type Ca2+ channels (LCCs). Cardiomyocytes dissociated from neonatal mouse ventricles were cultured until stabilization. Cell hypertrophy was induced by reapplication of 1% fatal bovine serum (FBS) following a period (24 h) of FBS depletion. Cell surface area increased from 862+/-73 microm2 to 2153+/-131 microm2 by FBS stimulation in control (250+/-1.8%). T-type Ca2+ current (I(CaT)) was inhibited dose-dependently by kurtoxin (KT) and efonidipine (ED) with IC50 0.07 microM and 3.2 microM, respectively in whole-cell voltage clamp. On the other hand, 1 microM KT which inhibits I(CaT) over 90% did not effect on L-type Ca2+ current (I(CaL)). 10 microM ED had the ability of I(CaL) blockade as well as that of I(CaT) blockade. 3 microM nisoldipine (ND) suppressed I(CaL) by over 80%. The increase in cell surface area following reapplication of FBS as observed in control (250+/-1.8%) was significantly reduced in the presence of 1 microM KT (216+/-1.2%) and virtually abolished in the presence of 10 microM ED (97+/-0.8%) and 3 microM ND (80+/-1.1%). Hypertrophy was associated with an increase in BNP mRNA of 316+/-3.6% in control and this increase was reduced as well in the presence of 1 microM KT (254+/-1.8%) and almost abolished in the presence of 10 microM ED (116+/-1.1%) and 3 muM ND (93+/-0.8%). Immunolabeling showed that translocation of nuclear factor of activated T cells (NFAT3) into the nucleus in response to FBS stimulation was markedly inhibited by either KT or ED as well as ND. Calcineurin phosphatase activity was upregulated 2.2-fold by FBS, but KT, ED and ND decreased this upregulation (1.7-fold, 0.8-fold, and 0.7-fold with KT, ED and ND respectively). These results suggest that blockade of Ca2+ entry into cardiomyocytes via TCCs may block pathophysiological signaling pathways leading to hypertrophy as well as via LCCs. The mechanism may be the inhibition of calcineurin-mediated NFAT3 activation resulting in prevention of its translocation into the nucleus.


Cardiovascular Research | 2010

Midkine gene transfer after myocardial infarction in rats prevents remodelling and ameliorates cardiac dysfunction

Arihiro Sumida; Mitsuru Horiba; Hisaaki Ishiguro; Hiroharu Takenaka; Norihiro Ueda; Hiroaki Ooboshi; Tobias Opthof; Kenji Kadomatsu; Itsuo Kodama

AIM We have previously reported that therapy with midkine (MK) has a protective effect in mouse models of myocardial infarction (MI) and ischemia/reperfusion. The underlying mechanism was proved to be anti-apoptosis and prevention of left ventricular (LV) remodelling following angiogenesis. Here we investigated the effects of overexpression of MK by adenoviral gene transfer on cardiac function and remodelling in an experimental rat MI model. METHODS AND RESULTS MI was created in male Wistar rats. Adenoviral vectors encoding mouse MK (AdMK) or beta-galactosidase (AdLacZ; as controls) were injected in myocardium at the onset of MI. One week after injection, in vivo adenoviral gene expression was assessed by western blot and histological analysis. After echocardiographic analysis at 4 weeks and haemodynamic analysis at 6 weeks after MI, AdMK animals had better cardiac function compared with AdLacZ animals. Heart weight (HW) and relative HW of AdMK animals were not different from sham-operated animals after 6 weeks, pointing to a very potent effect in the prevention of ischemic cardiomyopathy. In histological studies at 6 weeks after MI, AdMK animals had less fibrosis in the non-infarcted myocardium and higher vascular density in the border-zone area compared with AdLacZ animals. AdMK animals had strongly upregulated levels of phosphorylated extracellular signal-regulated kinase, Akt, PI 3-kinase, and Bcl-2, whereas the level of Bax was downregulated compared with AdLacZ animals. CONCLUSION Overexpression of MK prevents LV remodelling and ameliorates LV dysfunction by anti-apoptotic and pro-angiogenic effects. MK gene transfer may provide a new therapeutic modality in ischemic cardiomyopathy and ischemic heart failure.


American Journal of Physiology-heart and Circulatory Physiology | 2009

Midkine prevents ventricular remodeling and improves long-term survival after myocardial infarction

Hiroharu Takenaka; Mitsuru Horiba; Hisaaki Ishiguro; Arihiro Sumida; Mayumi Hojo; Akihiko Usui; Toshiaki Akita; Sadatoshi Sakuma; Yuichi Ueda; Itsuo Kodama; Kenji Kadomatsu

Cardiac remodeling is thought to be the major cause of chronic heart dysfunction after myocardial infarction (MI). However, molecules involved in this process have not been thoroughly elucidated. In this study we investigated the long-term effects of the growth factor midkine (MK) in cardiac remodeling after MI. MI was produced by ligation of the left coronary artery. MK expression was progressively increased after MI in wild-type mice, and MK-deficient mice showed a higher mortality. Exogenous MK improved survival and ameliorated left ventricular dysfunction and fibrosis not only of MK-deficient mice but also of wild-type mice. Angiogenesis in the peri-infarct zone was also enhanced. These in vivo changes induced by exogenous MK were associated with the activation of phosphatidylinositol 3-kinase (PI3K)/Akt and MAPKs (ERK, p38) and the expression of syndecans in the left ventricular tissue. In vitro experiments using human umbilical vein endothelial cells confirmed the potent angiogenic action of MK via the PI3K/Akt pathway. These results suggest that MK prevents the cardiac remodeling after MI and improves the survival most likely through an enhancement of angiogenesis. MK application could be a new therapeutic strategy for the treatment of ischemic heart failure.


Frontiers in Physiology | 2011

A single intracoronary injection of midkine reduces ischemia/reperfusion injury in Swine hearts: a novel therapeutic approach for acute coronary syndrome

Hisaaki Ishiguro; Mitsuru Horiba; Hiroharu Takenaka; Arihiro Sumida; Tobias Opthof; Yuko Ishiguro; Kenji Kadomatsu; Toyoaki Murohara; Itsuo Kodama

Several growth factors are effective for salvaging myocardium and limiting infarct size in experimental studies with small animals. Their benefit in large animals and feasibility in clinical practice remains to be elucidated. We investigated the cardioprotective effect of midkine (MK) in swine subjected to ischemia/reperfusion (I/R). I/R was created by left anterior descending coronary artery occlusion for 45 min using a percutaneous over-the-wire balloon catheter. MK protein was injected as a bolus through the catheter at the initiation of reperfusion [MK-treated (MKT) group]. Saline was injected in controls (CONT). Infarct size/area at risk (24 h after I/R) in MKT was almost five times smaller than in CONT. Echocardiography in MKT revealed a significantly higher percent wall thickening of the interventricular septum, a higher left ventricular (LV) fractional shortening, and a lower E/e′ (ratio of transmitral to annular flow) compared with CONT. LV catheterization in MKT showed a lower LV end-diastolic pressure, and a higher dP/dtmax compared with CONT. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling-positive myocytes and CD45-positive cell infiltration in the peri-infarct area were significantly less in MKT than in CONT. Here, we demonstrate that a single intracoronary injection of MK protein in swine hearts at the onset of reperfusion dramatically reduces infarct size and ameliorates systolic/diastolic LV function. This beneficial effect is associated with a reduction of apoptotic and inflammatory reactions. MK application during percutaneous coronary intervention may become a promising adjunctive therapy in acute coronary syndromes.


Circulation | 2018

Midkine Promotes Atherosclerotic Plaque Formation Through Its Pro-Inflammatory, Angiogenic and Anti-Apoptotic Functions in Apolipoprotein E-Knockout Mice

Yoshio Takemoto; Mitsuru Horiba; Masahide Harada; Kazuma Sakamoto; Kyosuke Takeshita; Toyoaki Murohara; Kenji Kadomatsu; Kaichiro Kamiya

BACKGROUND A recent study suggested that midkine (MK), a heparin-binding growth factor, is associated with atherosclerosis progression in patients with artery disease. It has previously been reported that MK plays a critical role in neointima formation in a restenosis model, whereas the role of MK in the development of atherosclerosis has not been investigated. The present study assessed the effect of MK administration on the process of atherosclerotic plaque formation in apolipoprotein E-knockout (ApoE-/-) mice.Methods and Results:Using an osmotic pump, human recombinant MK protein was intraperitoneally administered for 12 weeks in C57BL/6 ApoE-/-(ApoE-/--MK) and ApoE+/+mice fed a high-fat diet. Saline was administered to the control groups of ApoE-/-(ApoE-/--saline) and ApoE+/+mice. The atherosclerotic lesion areas in longitudinal aortic sections were significantly larger in ApoE-/--MK mice than in ApoE-/--saline mice. The aortic mRNA levels of pro-inflammatory and angiogenic factors, and the percentage of macrophages in aortic root lesions, were significantly higher in ApoE-/--MK mice than in ApoE-/--saline mice, whereas the percentage of apoptotic cells was significantly lower in ApoE-/--MK mice than in ApoE-/--saline mice. CONCLUSIONS The systemic administration of MK in ApoE-/-mice promoted atherosclerotic plaque formation through pro-inflammatory, angiogenic, and anti-apoptotic effects. MK may serve as a potential therapeutic target for the prevention of atherosclerosis under atherogenic conditions.


Environmental medicine : annual report of the Research Institute of Environmental Medicine, Nagoya University | 2002

A New Device for Percutaneous Intramyocardial Injection of Bio-active Substances

Mitsuru Horiba; Kenji Yasui; Itsuo Kodama

Recent advances of biological treatment for diseased hearts, in particular therapeutic angiogenesis in patients after myocardial infarction, are attracting a great attention of cardiologists. The methods currently available for local delivery of various bio-active substances, however, require substantial improvement in terms of efficacy and specificity. We developed a new device for injection of therapeutic factors with high stability at the target myocardium. A practical usefulness of the device was tested in rat femoral skeletal muscle by dye injection, and its potential benefits are discussed.

Collaboration


Dive into the Mitsuru Horiba's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Kadomatsu

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Muramatsu

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge