Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuru Mizuno is active.

Publication


Featured researches published by Mitsuru Mizuno.


Osteoarthritis and Cartilage | 2015

Synovial mesenchymal stem cells promote healing after meniscal repair in microminipigs

Yusuke Nakagawa; Shimpei Kondo; Mitsuru Mizuno; K. Takakuda; Shizuko Ichinose; Takashi Tabuchi; Hideyuki Koga; Kunikazu Tsuji; Ichiro Sekiya

OBJECTIVE The induction of synovial tissue to the meniscal lesion is crucial for meniscal healing. Synovial Mesenchymal stem cells (MSCs) are an attractive cell source because of their high proliferative and chondrogenic potentials. We examined whether transplantation of synovial MSCs promoted healing after meniscal repair of extended longitudinal tear of avascular area in a microminipig model. DESIGN Longitudinal tear lesion was made in medial menisci and sutured in both knees, and then a synovial MSC suspension was administered for 10 min only in unilateral knee. The sutured meniscus was evaluated morphologically and biomechanically at 2, 4, and 12 weeks. The behavior of transplanted MSCs was also examined. RESULTS The meniscal healing at 12 weeks was significantly better in the MSC group than in the control group; macroscopically, histologically and by T1rho mapping analysis. Transmission electron microscopic analysis demonstrated that the meniscus lesion was occupied by dense collagen fibrils only in the MSC group. Biomechanical analysis revealed that the tensile strength to failure of the meniscus higher in the MSC group than in the control group in each microminipig. Synovial tissue covered better along the superficial layer from the outer zone into the lesion of the meniscus in the MSC group at 2 and 4 weeks in each microminipig. Synovial MSCs labeled with ferucarbotran were detected in the meniscus lesion and adjacent synovium by MRI at 2 weeks. CONCLUSION Transplantation of synovial MSCs promoted healing after meniscal repair with induction of synovium into the longitudinal tear in the avascular zone of meniscus in pigs.


Stem Cells | 2015

Synovial Mesenchymal Stem Cells Promote Meniscus Regeneration Augmented by an Autologous Achilles Tendon Graft in a Rat Partial Meniscus Defect Model

Nobutake Ozeki; Seiya Matsuta; Hideyuki Koga; Yusuke Nakagawa; Mitsuru Mizuno; Kunikazu Tsuji; Yo Mabuchi; Chihiro Akazawa; Eiji Kobayashi; Tomoyuki Saito; Ichiro Sekiya

Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the diseases progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial‐derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10‐minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats. Stem Cells 2015;33:1927–1938


PLOS ONE | 2016

Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo

Yusuke Nakagawa; Koji Otabe; Nobutake Ozeki; Mitsuru Mizuno; Mio Udo; Ryusuke Saito; Katsuaki Yanagisawa; Shizuko Ichinose; Hideyuki Koga; Kunikazu Tsuji; Ichiro Sekiya

Objective Lubricin expression in the superficial cartilage will be a crucial factor in the success of cartilage regeneration. Mesenchymal stem cells (MSCs) are an attractive cell source and the use of aggregates of MSCs has some advantages in terms of chondrogenic potential and efficiency of cell adhesion. Lubricin expression in transplanted MSCs has not been fully elucidated so far. Our goals were to determine (1) whether cartilage pellets of human MSCs expressed lubricin in vitro chondrogenesis, (2) whether aggregates of human MSCs promoted lubricin expression, and (3) whether aggregates of MSCs expressed lubricin in the superficial cartilage after transplantation into osteochondral defects in rats. Methods For in vitro analysis, human bone marrow (BM) MSCs were differentiated into cartilage by pellet culture, and also aggregated using the hanging drop technique. For an animal study, aggregates of BM MSCs derived from GFP transgenic rats were transplanted to the osteochondral defect in the trochlear groove of wild type rat knee joints. Lubricin expression was mainly evaluated in differentiated and regenerated cartilages. Results In in vitro analysis, lubricin was detected in the superficial zone of the pellets and conditioned medium. mRNA expression of Proteoglycan4 (Prg4), which encodes lubricin, in pellets was significantly higher than that of undifferentiated MSCs. Aggregates showed different morphological features between the superficial and deep zone, and the Prg4 mRNA expression increased after aggregate formation. Lubricin was also found in the aggregate. In a rat study, articular cartilage regeneration was significantly better in the MSC group than in the control group as shown by macroscopical and histological analysis. The transmission electron microscope showed that morphology of the superficial cartilage in the MSC group was closer to that of the intact cartilage than in the control group. GFP positive cells remained in the repaired tissue and expressed lubricin in the superficial cartilage. Conclusion Cartilage derived from MSCs expressed lubricin protein both in vitro and in vivo. Aggregation promoted lubricin expression of MSCs in vitro and transplantation of aggregates of MSCs regenerated cartilage including the superficial zone in a rat osteochondral defect model. Our results indicate that aggregated MSCs could be clinically relevant for therapeutic approaches to articular cartilage regeneration with an appropriate superficial zone in the future.


Journal of Orthopaedic Research | 2017

Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates

Shimpei Kondo; Yusuke Nakagawa; Hideyuki Koga; Toshifumi Watanabe; Kunikazu Tsuji; Shinichi Sotome; Atsushi Okawa; Shinji Kiuchi; Hideo Ono; Mitsuru Mizuno; Ichiro Sekiya

Transplantation of aggregates of synovial mesenchymal stem cells (MSCs) enhanced meniscus regeneration in rats. Anatomy and biological properties of the meniscus depend on animal species. To apply this technique clinically, it is valuable to investigate the use of animals genetically close to humans. We investigated whether transplantation of aggregates of autologous synovial MSCs promoted meniscal regeneration in aged primates. Chynomolgus primates between 12 and 13 years old were used. After the anterior halves of the medial menisci in both knees were removed, an average of 14 aggregates consisting of 250,000 synovial MSCs were transplanted onto the meniscus defect. No aggregates were transplanted to the opposite knee for the control. Meniscus and articular cartilage were analyzed macroscopically, histologically, and by MRI T1rho mapping at 8 (n = 3) and 16 weeks (n = 4). The medial meniscus was larger and the modified Paulis histological score for the regenerated meniscus was better in the MSC group than in the control group in each primate at 8 and 16 weeks. Mankins score for the medial femoral condyle cartilage was better in the MSC group than in the control group in all primates at 16 weeks. T1rho value for both the regenerated meniscus and adjacent articular cartilage in the MSC group was closer to the normal meniscus than in the control group in all primates at 16 weeks. Transplantation of aggregates of autologous synovial MSCs promoted meniscus regeneration and delayed progression of degeneration of articular cartilage in aged primates. This is the first report dealing with meniscus regeneration in primates.


Stem Cells | 2014

Brief Report: Reconstruction of Joint Hyaline Cartilage by Autologous Progenitor Cells Derived from Ear Elastic Cartilage

Mitsuru Mizuno; Shinji Kobayashi; Takanori Takebe; Hiroomi Kan; Yuichiro Yabuki; Takahisa Matsuzaki; Hiroshi Yoshikawa; Seiichiro Nakabayashi; Lee Jeong Ik; Jiro Maegawa; Hideki Taniguchi

In healthy joints, hyaline cartilage covering the joint surfaces of bones provides cushioning due to its unique mechanical properties. However, because of its limited regenerative capacity, age‐ and sports‐related injuries to this tissue may lead to degenerative arthropathies, prompting researchers to investigate a variety of cell sources. We recently succeeded in isolating human cartilage progenitor cells from ear elastic cartilage. Human cartilage progenitor cells have high chondrogenic and proliferative potential to form elastic cartilage with long‐term tissue maintenance. However, it is unknown whether ear‐derived cartilage progenitor cells can be used to reconstruct hyaline cartilage, which has different mechanical and histological properties from elastic cartilage. In our efforts to develop foundational technologies for joint hyaline cartilage repair and reconstruction, we conducted this study to obtain an answer to this question. We created an experimental canine model of knee joint cartilage damage, transplanted ear‐derived autologous cartilage progenitor cells. The reconstructed cartilage was rich in proteoglycans and showed unique histological characteristics similar to joint hyaline cartilage. In addition, mechanical properties of the reconstructed tissues were higher than those of ear cartilage and equal to those of joint hyaline cartilage. This study suggested that joint hyaline cartilage was reconstructed from ear‐derived cartilage progenitor cells. It also demonstrated that ear‐derived cartilage progenitor cells, which can be harvested by a minimally invasive method, would be useful for reconstructing joint hyaline cartilage in patients with degenerative arthropathies. Stem Cells 2014;32:816–821


Stem Cell Research & Therapy | 2015

Platelet-derived growth factor (PDGF)-AA/AB in human serum are potential indicators of the proliferative capacity of human synovial mesenchymal stem cells

Mitsuru Mizuno; Hisako Katano; Koji Otabe; Keiichiro Komori; Yukie Matsumoto; Shizuka Fujii; Nobutake Ozeki; Kunikazu Tsuji; Hideyuki Koga; Akifumi Matsuyama; Ichiro Sekiya

IntroductionFor expansion of human mesenchymal stem cells (MSCs), autologous human serum is safer than fetal bovine serum in clinical situations. One of the problems with the use of autologous human serum is that its proliferative effect on MSCs varies widely between donors. The threefold goals of this study were: (1) to demonstrate an improved method for preparing human serum; (2) to identify growth factors predictive of proliferative potential; and (3) to identify a cytokine to promote MSC proliferation in human serum.MethodsFresh blood was collected using a closed bag system containing glass beads. The bag was shaken at 20 °C for 30 minutes for rapid preparation, or kept stationary at 4 °C for 24 hours for slow preparation. Passage 0 synovial MSCs derived from four donors were cultured with 10 % conventional rapid preparation serum or modified slow preparation serum from four different donors. To perform the colony-forming unit assay, synovial MSCs were cultured in these serums. The protein expression profile in serum was analyzed using cytokine array. The candidate proteins were speculated from the correlation between the colony-forming ability and protein expression. As an evaluation of the candidate proteins, proliferation ability, surface marker phenotype and differentiation capability of synovial MSCs were examined.ResultsCompared with rapid preparation serum, slow preparation serum resulted in a significantly higher total colony number and twofold higher expression levels of nine proteins (angiopoietin-1, BDNF, EGF, ENA-78, IGFBP-2, platelet-derived growth factor (PDGF)-AA, PDGF-AB/BB, RANTES and TfR). Colony number was positively correlated with PDGF-AA/AB concentrations. Exogenous PDGF-AA significantly promoted proliferation of synovial MSCs, whereas PDGF receptor (PDGFR) inhibitor decreased it. Addition of PDGFs or PDGFR inhibitor did not affect surface epitopes of synovial MSCs. Pretreatment with PDGFs or PDGFR inhibitor did not affect chondrogenic, adipogenic, or calcification potentials of synovial MSCs.ConclusionSlow preparation serum contained higher concentrations of PDGF-AA/AB and increased the colony formation number of synovial MSCs. PDGF-AA/AB were indicators of the proliferative potential of human serum. Exogenous PDGF-AA increased proliferation of synovial MSCs without alteration of surface epitopes and differentiation potentials.


Stem Cell Research & Therapy | 2018

Specific markers and properties of synovial mesenchymal stem cells in the surface, stromal, and perivascular regions

Mitsuru Mizuno; Hisako Katano; Yo Mabuchi; Yusuke Ogata; Shizuko Ichinose; Shizuka Fujii; Koji Otabe; Keiichiro Komori; Nobutake Ozeki; Hideyuki Koga; Kunikazu Tsuji; Chihiro Akazawa; Ichiro Sekiya

BackgroundSynovial mesenchymal stem cells (MSCs) are an attractive cell source for cartilage and meniscus regeneration. Synovial tissue can be histologically classified into three regions; surface, stromal and perivascular region, but the localization of synovial MSCs has not been fully investigated. We identified markers specific for each region, and compared properties of MSCs derived from each region in the synovium.MethodsThe intensity of immunostaining with 19 antibodies was examined for surface, stromal, and perivascular regions of human synovium from six osteoarthritis patients. Specific markers were identified and synovial cells derived from each region were sorted. Proliferation, surface marker expression, chondrogenesis, calcification and adipogenesis potentials were compared in synovial MSCs derived from the three regions.ResultsWe selected CD55+ CD271− for synovial cells in the surface region, CD55− CD271− in the stromal region, and CD55− CD271+ in the perivascular region. The ratio of the sorted cells to non-hematopoietic lineage cells was 5% in the surface region, 70% in the stromal region and 15% in the perivascular region. Synovial cells in the perivascular fraction had the greatest proliferation potential. After expansion, surface marker expression profiles and adipogenesis potentials were similar but chondrogenic and calcification potentials were higher in synovial MSCs derived from the perivascular region than in those derived from the surface and stromal regions.ConclusionsWe identified specific markers to isolate synovial cells from the surface, stromal, and perivascular regions of the synovium. Synovial MSCs in the perivascular region had the highest proliferative and chondrogenic potentials among the three regions.


Stem Cell Research & Therapy | 2018

High-sensitivity virus and mycoplasma screening test reveals high prevalence of parvovirus B19 infection in human synovial tissues and bone marrow

Ken Watanabe; Koji Otabe; Norio Shimizu; Keiichirou Komori; Mitsuru Mizuno; Hisako Katano; Hideyuki Koga; Ichiro Sekiya

BackgroundLatent microorganism infection is a safety concern for the clinical application of mesenchymal stem cells (MSCs). The aim of this study is to investigate the frequencies and sensitivities of the latent virus and mycoplasma infections in synovium, bone marrow, peripheral blood cells, and blood plasma and cultured synovial MSCs.MethodsTotal DNA and RNA of the synovium (n = 124), bone marrow (n = 123), peripheral blood cells (n = 121), plasma (n = 121), and 14-day cultured synovial MSCs (n = 63) were collected from patients who underwent total knee arthroplasty or anterior ligament reconstruction after written informed consents were obtained. The multiplex polymerase chain reaction (PCR) primers were designed to quantitatively measure the representative genomes of 13 DNA viruses, 6 RNA viruses, and 9 mycoplasmas. Multi-spliced mRNA detection and virus spike test were also performed to demonstrate the sensitivity of synovial MSCs to the candidate pathogens.ResultsIn synovium and bone marrow, the positive rates of parvovirus B19 genome were significantly higher than in peripheral blood cells (18.7% and 22% vs. 0.8%, respectively). Multi-alignment analysis of amplified and sequenced viral target genes showed the proximity of the parvovirus B19 gene from different tissue in the same patients. Synovial MSCs cultured for 14 days were positive for virus infection only in two patients (2/62 = 3%). Parvovirus B19 multi-spliced mRNAs were not detected in these two samples. Virus spike test demonstrated the sensitivity of synovial MSCs to herpes simplex virus (HSV)1 and cytomegalovirus (CMV), but not to parvovirus B19.ConclusionThis study revealed a relatively high incidence of latent parvovirus B19 in synovium and bone marrow tissue.


Regenerative Therapy | 2018

Anterior cruciate ligament-derived mesenchymal stromal cells have a propensity to differentiate into the ligament lineage

Yusuke Ogata; Yo Mabuchi; Kosuke Shinoda; Yuta Horiike; Mitsuru Mizuno; Koji Otabe; Eriko Grace Suto; Nobuharu Suzuki; Ichiro Sekiya; Chihiro Akazawa

Introduction The anterior cruciate ligament (ACL) consists of various components, such as collagen, elastin fibres, and fibroblasts. Because ACL has a poor regenerative ability, ACL reconstruction need require the use of autologous tendons. In recent years, tissue-resident stem cells have been studied to promote ACL regeneration as an alternatively method. However, the existence of stem cells in ligaments has not been clearly defined. Here, we prospectively isolated stem cells from ACLs and characterized their properties. Methods ACLs from 11 donors and bone marrows (BM) from 8 donors were obtained with total knee arthroplasty. We used flow cytometry to screen the cell surface markers on ACL cells. Frozen sections were prepared from patient ACL tissues and stained with specific antibodies. Cultured ACL-derived and BM-derived cells at passage 3 were differentiated into adipocytes, osteoblasts and tendon/ligament cells. Results ACL-derived mesenchymal stem/stromal cells (ACL-MSCs) expressed high levels of CD73 and CD90. Immunohistochemical analyses revealed that ACL-MSCs were located on the inner surface of ACL sinusoids. Furthermore, the expression of cell surface antigens was clearly different between ACL-MSCs and bone marrow (BM)-derived MSCs (BM-MSCs) at the time of isolation, but the two cell populations became indistinguishable after long-term culture. Interestingly, ACL-MSCs are markedly different from BM-MSCs in their differentiation ability and have a high propensity to differentiate into ligament-committed cells. Conclusions Our findings suggest that ACL-MSCs express CD90 and CD73 markers, and their differentiation capacity is maintained even through culture. The cell population having tissue-specific properties is an important research target for investigating the ligament therapies.


PLOS ONE | 2018

Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infrapatellar fat pad, adipose tissue, and bone marrow

Akari Sasaki; Mitsuru Mizuno; Nobutake Ozeki; Hisako Katano; Koji Otabe; Kunikazu Tsuji; Hideyuki Koga; Manabu Mochizuki; Ichiro Sekiya

Osteoarthritis (OA), a common chronic joint disorder in both humans and canines, is characterized by a progressive loss of articular cartilage. Canines can serve as an animal model of OA for human medicine, and this research can simultaneously establish effective veterinary treatments for canine OA. One attractive treatment that can lead to cartilage regeneration is the use of mesenchymal stem cells (MSCs). However, for canine OA, little information is available regarding the best source of MSCs. The purpose of this study was to identify a promising MSC source for canine cartilage regeneration. We collected synovial, infrapatellar fat pad, inguinal adipose, and bone marrow tissues from six canines and then conducted a donor-matched comparison of the properties of MSCs derived from these four tissues. We examined the surface epitope expression, proliferation capacity, and trilineage differentiation potential of all four populations. Adherent cells derived from all four tissue sources exhibited positivity for CD90 and CD44 and negativity for CD45 and CD11b. The positive rate for CD90 was higher for synovium-derived than for adipose-derived and bone marrow-derived MSCs. Synovium-derived and infrapatellar fat pad-derived MSCs displayed substantial proliferation ability, and all four populations underwent trilineage differentiation. During chondrogenesis, the wet weight was heavier for cartilage pellets derived from synovium MSCs than from the other three sources. The synovium is therefore a promising source for MSCs for canine cartilage regeneration. Our findings provide useful information about canine MSCs that may be applicable to regenerative medicine for treatment of OA.

Collaboration


Dive into the Mitsuru Mizuno's collaboration.

Top Co-Authors

Avatar

Ichiro Sekiya

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Hideyuki Koga

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Kunikazu Tsuji

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Nobutake Ozeki

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Koji Otabe

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Hisako Katano

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Keiichiro Komori

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Shizuka Fujii

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Yusuke Nakagawa

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Chihiro Akazawa

Tokyo Medical and Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge