Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitsuru Seishima is active.

Publication


Featured researches published by Mitsuru Seishima.


Atherosclerosis | 1989

Transient changes of serum lipoprotein(a) as an acute phase protein

Satoshi Maeda; Akira Abe; Mitsuru Seishima; Kazuhiko Makino; Akio Noma; Masaka Kawade

Serum lipoprotein(a) (Lp(a)) was serially determined after acute attacks of myocardial infarction and after surgical operations. Acute phase proteins, such as C-reactive protein, alpha 1-acid glycoprotein, alpha 1-antitrypsin and haptoglobin, increased rapidly and markedly after the episodes. Initial values of serum Lp(a) concentrations were almost the same in both groups. Increases in serum Lp(a) levels were also observed during the first few days, with a return to the initial levels after more than 1 month. The periods for reaching maximal levels of acute phase proteins were similar in both groups of patients. On the contrary, the period required for Lp(a) to reach the maximal level in the myocardial infarction group was significantly longer than in the post-operative group. The present study suggests that Lp(a) has the characteristics of an acute phase reactant and may play an important role in recovery from tissue damage.


European Journal of Immunology | 2001

Lipopolysaccharide induction of indoleamine 2,3‐dioxygenase is mediated dominantly by an IFN‐γ‐independent mechanism

Suwako Fujigaki; Kuniaki Saito; Kenji Sekikawa; Shigenobu Tone; Osamu Takikawa; Hidehiko Fujii; Hisayasu Wada; Akio Noma; Mitsuru Seishima

Indoleamine 2,3‐dioxygenase (IDO) is a rate‐limiting enzyme in the L‐tryptophan‐kynurenine pathway, which converts an essential amino acid, L‐tryptophan, to N‐formylkynurenine. It has been speculated that IFN‐γ is a dominant IDO inducer in vivo. The present study used IFN‐γ or TNF‐α gene‐disrupted mice and IFN‐γ antibody‐treated mice to demonstrate that lipopolysaccharide (LPS)‐induced systemic IDO is largely dependent on TNF‐α rather than IFN‐γ. IFN‐γ‐independent IDO induction was also demonstrated in vitro with LPS‐stimulated monocytic THP‐1 cells. These findings clearly indicate that there is an IFN‐γ‐independent mechanism of IDO induction in addition to the IFN‐γ‐dependent mechanism.


Journal of the American College of Cardiology | 1997

Plasma Fas Ligand, an Inducer of Apoptosis, and Plasma Soluble Fas, an Inhibitor of Apoptosis, in Patients With Chronic Congestive Heart Failure

Kazuhiko Nishigaki; Shinya Minatoguchi; Mitsuru Seishima; Kiyoji Asano; Toshiyuki Noda; Norio Yasuda; Hirotake Sano; Hirokazu Kumada; Masao Takemura; Akio Noma; Tsutomu Tanaka; Sachiro Watanabe; Hisayoshi Fujiwara

OBJECTIVES This study sought to examine plasma levels of soluble Fas/APO-1 receptor (sFas), an inhibitor of apoptosis, and soluble Fas ligand (sFas-L), an inducer of apoptosis, and their relation to each other and to other clinical variables, such as New York Heart Association functional class, tumor necrosis factor (TNF) and interleukin-6 (IL-6) in congestive heart failure (CHF). BACKGROUND It has been recently reported that apoptotic cell death occurs in myocytes of dogs with CHF. Hypoxia is frequently seen in advanced CHF and can stimulate Fas/APO-1 receptors (Fas) to induce apoptosis in cultured myocytes. Fas and Fas ligand (Fas-L) are cell-surface proteins and representative apoptosis-signaling molecules. Fas on the cell membrane induces apoptosis when it binds Fas-L or sFas-L. However, plasma sFas, a molecule lacking the transmembrane domain of Fas, blocks apoptosis by inhibiting binding between Fas and Fas-L or sFas-L on the cell membrane. At present, it is unknown whether plasma sFas-L and plasma sFas increase in the presence of cardiac disease. METHODS The study included 70 patients (mean [+/-SEM] age 65 +/- 2 years, range 21 to 93) with chronic CHF (coronary artery disease in 28, dilated cardiomyopathy in 27, valvular heart disease in 15) and 62 age- and gender-matched normal control subjects. Plasma levels of sFas, sFas-L, TNF-alpha and IL-6 were measured by enzyme-linked immunosorbent assays using monoclonal anti-human antibodies. RESULTS There was no significant difference in sFas-L levels between normal subjects and patients in functional classes I to IV; however, sFas increased with severity of functional classification, independent of the underlying disease. sFas levels were significantly higher even in patients in functional class II than in normal subjects and those in functional class I, and were highest in patients in functional class IV (normal subjects; 2.2 +/- 0.1 ng/ml; functional class I: 2.2 +/- 0.2 ng/ml; functional class II: 3.1 +/- 0.2 ng/ml; functional class III: 3.9 +/- 0.3 ng/ml; functional class IV: 5.1 +/- 0.6 ng/ml). Plasma sFas levels were significantly higher in patients with elevated pulmonary artery wedge pressure and a decresed cardiac index than in those with values in the normal range. In patients in functional class IV, there was no significant difference in plasma sFas levels between the survivors and non-survivors during 6-month follow-up. However, plasma levels of sFas tended to decrease in nine patients with clinical improvement (baseline sFas: 5.2 +/- 0.8 ng/ml; 6-month sFas: 4.3 +/- 0.5 ng/ml, p = 0.07) but were similar in patients with no change in functional class. TNF-alpha and IL-6 were increased significantly only in patients in functional class IV, as previously reported, but were not related to sFas. CONCLUSIONS We found elevated levels of plasma sFas and no increase in plasma sFas-L in human CHF. The increase in sFas may play an important role in the pathophysiologic mechanisms of CHF.


The Journal of Neuroscience | 2004

Role of Tumor Necrosis Factor-α in Methamphetamine-Induced Drug Dependence and Neurotoxicity

Akira Nakajima; Kiyofumi Yamada; Taku Nagai; Takehisa Uchiyama; Yoshiaki Miyamoto; Takayoshi Mamiya; Jue He; Atsumi Nitta; Makoto Mizuno; Manh Hung Tran; Aika Seto; Masako Yoshimura; Kiyoyuki Kitaichi; Takaaki Hasegawa; Kuniaki Saito; Yasuhiro Yamada; Mitsuru Seishima; Kenji Sekikawa; Hyoung-Chun Kim; Toshitaka Nabeshima

Tumor necrosis factor-α (TNF-α), a proinflammatory cytokine, is now emerging as an important modulator of the function of the CNS. Methamphetamine (METH) is a widely abused psychostimulant that causes euphoria, hyperactivity, and drug dependence. High doses of METH cause long-term neurotoxicity in dopaminergic neurons. In this study, we investigated a role of TNF-α in METH-induced dependence and neurotoxicity. Repeated treatment with METH (2 mg/kg for 5 d) in rats induced a significant increase in TNF-α mRNA and protein expression in the brain. Exogenous TNF-α (1-4 μg) blocked locomotor-stimulating and rewarding effects of METH, as well as METH (4 mg/kg; four times at 2 hr intervals)-induced dopaminergic neurotoxicity in mice. To examine a role of endogenous TNF-α in behavioral and neurochemical effects of METH, we used mice with targeted deletions of the TNF-α gene. TNF-α-(-/-) mice showed enhanced responses to the locomotor-sensitizing, rewarding, and neurotoxic effects of METH compared with wild-type mice. We also examined the role of TNF-α in METH-induced dopamine (DA) release and uptake in vitro and in vivo in C57BL/6 mice. Exogenous TNF-α (4 μg) attenuated the METH-induced increase in extracellular striatal DA in vivo and potentiated striatal DA uptake into synaptosomes in vitro and in vivo. Furthermore, TNF-α activated vesicular DA uptake by itself and diminished the METH-induced decrease in vesicular DA uptake. Our findings suggest that TNF-α plays a neuroprotective role in METH-induced drug dependence and neurotoxicity by activating plasmalemmal and vesicular DA transporter as well as inhibiting METH-induced increase in extracellular DA levels.


Infection and Immunity | 2002

L-tryptophan-L-kynurenine pathway metabolism accelerated by Toxoplasma gondii infection is abolished in gamma interferon-gene-deficient mice: cross-regulation between inducible nitric oxide synthase and indoleamine-2,3-dioxygenase.

Suwako Fujigaki; Kuniaki Saito; Masao Takemura; Naoya Maekawa; Yasuhiro Yamada; Hisayasu Wada; Mitsuru Seishima

ABSTRACT l-Tryptophan degradation by indoleamine 2,3-dioxygenase (IDO) might have an important role in gamma interferon (IFN-γ)-induced antimicrobial effects. In the present study, the effects of Toxoplasmagondii infection on IDO were investigated by using wild-type and IFN-γ-gene-deficient (knockout) (IFN-γ KO) mice. In wild-type C57BL/6J mice, enzyme activities and mRNA levels for IDO in both lungs and brain were markedly increased and lung l-tryptophan concentrations were dramatically decreased following T. gondii infection. In contrast, these metabolic changes did not occur in T. gondii-infected IFN-γ KO mice or in uninfected IFN-γ KO mice. The levels of inducible nitric oxide synthase (iNOS) induction in infected IFN-γ KO mice were high in lungs and low in brain compared to those in infected wild-type mice. The extent of increased mRNA expression of T. gondii surface antigen gene 2 (SAG2) induced in lungs and brain by T. gondii infection was significantly enhanced in IFN-γ KO mice compared to wild-type mice on day 7 postinfection. Treatment with N-nitro-l-arginine methyl ester, an iNOS inhibitor, increased the levels of SAG2 mRNA in brain but not in lungs and of plasma l-kynurenine after T. gondii infection. This in vivo study provides evidence that l-tryptophan depletion caused by T. gondii is directly mediated by IFN-γ in the lungs, where iNOS is not induced by IFN-γ. This study suggests that there is an antitoxoplasma mechanism of cross-regulation between iNOS and IDO and that the expression of the main antiparasite effector mechanisms for iNOS and/or IDO may vary among tissues.


Cardiovascular Research | 2011

The role of autophagy emerging in postinfarction cardiac remodelling

Hiromitsu Kanamori; Genzou Takemura; Kazuko Goto; Rumi Maruyama; Akiko Tsujimoto; Atsushi Ogino; Toshiaki Takeyama; Tomonori Kawaguchi; Takatomo Watanabe; Takako Fujiwara; Hisayoshi Fujiwara; Mitsuru Seishima; Shinya Minatoguchi

AIMS Autophagy is activated in cardiomyocytes in ischaemic heart disease, but its dynamics and functional roles remain unclear after myocardial infarction. We observed the dynamics of cardiomyocyte autophagy and examined its role during postinfarction cardiac remodelling. METHODS AND RESULTS Myocardial infarction was induced in mice by ligating the left coronary artery. During both the subacute and chronic stages (1 and 3 weeks postinfarction, respectively), autophagy was found to be activated in surviving cardiomyocytes, as demonstrated by the up-regulated expression of microtubule-associated protein-1 light chain 3-II (LC3-II), p62 and cathepsin D, and by electron microscopic findings. Activation of autophagy, specifically the digestion step, was prominent in cardiomyocytes 1 week postinfarction, especially in those bordering the infarct area, while the formation of autophagosomes was prominent 3 weeks postinfarction. Bafilomycin A1 (an autophagy inhibitor) significantly aggravated postinfarction cardiac dysfunction and remodelling. Cardiac hypertrophy was exacerbated in this group and was accompanied by augmented ventricular expression of atrial natriuretic peptide. In these hearts, autophagic findings (i.e. expression of LC3-II and the presence of autophagosomes) were diminished, and activation of AMP-activated protein kinase was enhanced. Treatment with rapamycin (an autophagy enhancer) brought about opposite outcomes, including mitigation of cardiac dysfunction and adverse remodelling. A combined treatment with bafilomycin A1 and rapamycin offset each effect on cardiomyocyte autophagy and cardiac remodelling in the postinfarction heart. CONCLUSION These findings suggest that cardiomyocyte autophagy is an innate mechanism that protects against progression of postinfarction cardiac remodelling, implying that augmenting autophagy could be a therapeutic strategy.


Journal of Neuroimmunology | 2000

Neurobehavioral alterations in mice with a targeted deletion of the tumor necrosis factor-α gene: implications for emotional behavior

Kiyofumi Yamada; Ryuichi Iida; Yoshiaki Miyamoto; Kuniaki Saito; Kenji Sekikawa; Mitsuru Seishima; Toshitaka Nabeshima

Tumor necrosis factor-alpha (TNF-alpha) is emerging as an important modulator of the function of the central nervous system. In the present study, we investigated a role of endogenous TNF-alpha in cognitive and emotional function using mice with targeted deletions of the TNF-alpha gene. TNF-alpha-(-/-) mice showed normal diurnal rhythms of spontaneous locomotor activity and cognitive functions. Emotional behavior in the mutant mice, however, was significantly altered, which manifested in the performance in the open-field, elevated plus maze, and forced swimming tests. The altered performance in the elevated plus maze test was significantly alleviated by treatment with diazepam. Postmortem brain analysis of TNF-alpha-(-/-) mice revealed a significant increase in serotonin metabolism in the brain. These findings suggest a role for endogenous TNF-alpha in emotional behavior, which may possibly be related to alterations of serotonine metabolism.


Circulation | 2001

Tumor Necrosis Factor-α (TNF-α) Plays a Protective Role in Acute Viral Myocarditis in Mice A Study Using Mice Lacking TNF-α

Hisayasu Wada; Kuniaki Saito; Tsugiyasu Kanda; Isao Kobayashi; Hidehiko Fujii; Suwako Fujigaki; Naoya Maekawa; Hisato Takatsu; Hisayoshi Fujiwara; Kenji Sekikawa; Mitsuru Seishima

BACKGROUND It has been reported that tumor necrosis factor-alpha (TNF-alpha) is expressed in the heart with viral myocarditis and that its expression aggravates the condition. The pathophysiological effects of TNF-alpha on viral myocarditis, however, have not been fully elucidated. METHODS AND RESULTS To investigate the role of TNF-alpha in the progression of viral myocarditis, we used TNF-alpha gene-deficient mice (TNF-alpha(-/-)) and induced acute myocarditis by infection with encephalomyocarditis virus (EMCV). The survival rate of TNF-alpha(-/-) mice after EMCV infection was significantly lower than that of TNF-alpha(+/+) mice (0% versus 67% on day 14). Injection of recombinant human TNF-alpha (0.2 to 4.0 microg/mouse IV) improved the survival of TNF-alpha(-/-) mice in a dose-dependent manner, indicating that TNF-alpha is essential for protection against viral myocarditis. The levels of viral titer and viral genomic RNA of EMCV in the myocardium were significantly higher in TNF-alpha(-/-) than in TNF-alpha(+/+) mice. Histopathological examination showed that the inflammatory changes of the myocardium were less marked in TNF-alpha(-/-) than in TNF-alpha(+/+) mice. Immunohistochemical analysis revealed that the levels of immunoreactivity of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in the myocardium were decreased in TNF-alpha(-/-) mice compared with TNF-alpha(+/+) mice. CONCLUSIONS These observations suggested that TNF-alpha is necessary for adhesion molecule expression and to recruit leukocytes to inflammatory sites, and thus, the lack of this cytokine resulted in failure of elimination of infectious agents. We concluded that TNF-alpha plays a protective role in the acute stage of viral myocarditis.Background—It has been reported that tumor necrosis factor-α (TNF-α) is expressed in the heart with viral myocarditis and that its expression aggravates the condition. The pathophysiological effects of TNF-α on viral myocarditis, however, have not been fully elucidated. Methods and Results—To investigate the role of TNF-α in the progression of viral myocarditis, we used TNF-α gene–deficient mice (TNF-α−/−) and induced acute myocarditis by infection with encephalomyocarditis virus (EMCV). The survival rate of TNF-α−/− mice after EMCV infection was significantly lower than that of TNF-α+/+ mice (0% versus 67% on day 14). Injection of recombinant human TNF-α (0.2 to 4.0 μg/mouse IV) improved the survival of TNF-α−/− mice in a dose-dependent manner, indicating that TNF-α is essential for protection against viral myocarditis. The levels of viral titer and viral genomic RNA of EMCV in the myocardium were significantly higher in TNF-α−/− than in TNF-α+/+ mice. Histopathological examination showed that the inflam...


American Journal of Physiology-heart and Circulatory Physiology | 2011

Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion

Hiromitsu Kanamori; Genzou Takemura; Kazuko Goto; Rumi Maruyama; Koh Ono; Kazuya Nagao; Akiko Tsujimoto; Atsushi Ogino; Toshiaki Takeyama; Tomonori Kawaguchi; Takatomo Watanabe; Masanori Kawasaki; Takako Fujiwara; Hisayoshi Fujiwara; Mitsuru Seishima; Shinya Minatoguchi

Ischemia is known to potently stimulate autophagy in the heart, which may contribute to cardiomyocyte survival. In vitro, transfection with small interfering RNAs targeting Atg5 or Lamp-2 (an autophagy-related gene necessary, respectively, for the initiation and digestion step of autophagy), which specifically inhibited autophagy, diminished survival among cultured cardiomyocytes subjected to anoxia and significantly reduced their ATP content, confirming an autophagy-mediated protective effect against anoxia. We next examined the dynamics of cardiomyocyte autophagy and the effects of manipulating autophagy during acute myocardial infarction in vivo. Myocardial infarction was induced by permanent ligation of the left coronary artery in green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) transgenic mice in which GFP-LC3 aggregates to be visible in the cytoplasm when autophagy is activated. Autophagy was rapidly (within 30 min after coronary ligation) activated in cardiomyocytes, and autophagic activity was particularly strong in salvaged cardiomyocytes bordering the infarcted area. Treatment with bafilomycin A1, an autophagy inhibitor, significantly increased infarct size (31% expansion) 24 h postinfarction. Interestingly, acute infarct size was significantly reduced (23% reduction) in starved mice showing prominent autophagy before infarction. Treatment with bafilomycin A1 reduced postinfarction myocardial ATP content, whereas starvation increased myocardial levels of amino acids and ATP, and the combined effects of bafilomycin A1 and starvation on acute infarct size offset one another. The present findings suggest that autophagy is an innate and potent process that protects cardiomyocytes from ischemic death during acute myocardial infarction.


Journal of Ultrasound in Medicine | 2010

Sonographic Evaluation of the Peripheral Nerve in Diabetic Patients The Relationship Between Nerve Conduction Studies, Echo Intensity, and Cross-sectional Area

Tsuneo Watanabe; Hiroyasu Ito; Ayako Sekine; Yuriko Katano; Takashi Nishimura; Yoshihiro Kato; Jun Takeda; Mitsuru Seishima; Toshio Matsuoka

Objective. Early detection of nerve dysfunction is important to provide appropriate care for patients with diabetic polyneuropathy. The aim of this study was to assess the echo intensity of the peripheral nerve and to evaluate the relationship between nerve conduction study results and sonographic findings in patients with type 2 diabetes mellitus. Methods. Thirty patients with type 2 diabetes (mean ± SD, 59.8 ± 10.2 years) and 32 healthy volunteers (mean, 53.7 ± 13.9 years) were enrolled in this study. The cross‐sectional area (CSA) and echo intensity of the peripheral nerve were evaluated at the carpal tunnel and proximal to the wrist (wrist) of the median nerve and in the tibial nerve at the ankle. Results. There was a significant increase in the CSA and hypoechoic area of the nerve in diabetic patients compared with controls (wrist, 7.1 ± 2.0 mm2, 62.3% ± 3.0%; ankle, 8.9 ± 2.8 mm2, 57.6% ± 3.9%; and wrist, 9.8 ± 3.7 mm2, 72.3% ± 6.6%; ankle, 15.0 ± 6.1 mm2, 61.4% ± 5.3% in controls and diabetic patients, respectively; P < .05). Cross‐sectional areas were negatively correlated with reduced motor nerve conduction velocity and delayed latency. Conclusions. These results suggest that sonographic examinations are useful for the diagnosis of diabetic neuropathy.

Collaboration


Dive into the Mitsuru Seishima's collaboration.

Top Co-Authors

Avatar

Kuniaki Saito

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge