Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mitul Shah is active.

Publication


Featured researches published by Mitul Shah.


Nature Genetics | 2012

Common variation near CDKN1A , POLD3 and SHROOM2 influences colorectal cancer risk

Malcolm G. Dunlop; Sara E. Dobbins; Susan M. Farrington; Angela Jones; Claire Palles; Nicola Whiffin; Albert Tenesa; Sarah L. Spain; Peter Broderick; Li-Yin Ooi; Enric Domingo; Claire Smillie; Marc Henrion; Matthew Frampton; Lynn Martin; Graeme Grimes; Maggie Gorman; Colin A. Semple; Yusanne P Ma; Ella Barclay; James Prendergast; Jean-Baptiste Cazier; Bianca Olver; Steven Penegar; Steven Lubbe; Ian Chander; Luis Carvajal-Carmona; Stephane Ballereau; Amy Lloyd; Jayaram Vijayakrishnan

We performed a meta-analysis of five genome-wide association studies to identify common variants influencing colorectal cancer (CRC) risk comprising 8,682 cases and 9,649 controls. Replication analysis was performed in case-control sets totaling 21,096 cases and 19,555 controls. We identified three new CRC risk loci at 6p21 (rs1321311, near CDKN1A; P = 1.14 × 10−10), 11q13.4 (rs3824999, intronic to POLD3; P = 3.65 × 10−10) and Xp22.2 (rs5934683, near SHROOM2; P = 7.30 × 10−10) This brings the number of independent loci associated with CRC risk to 20 and provides further insight into the genetic architecture of inherited susceptibility to CRC.


Journal of Clinical Oncology | 2008

Risk Factors for the Incidence of Breast Cancer: Do They Affect Survival From the Disease?

Gillian C. Barnett; Mitul Shah; Karen Redman; Douglas F. Easton; Bruce A.J. Ponder; Paul Pharoah

PURPOSE Risk factors that influence the incidence of breast cancer may also affect survival after diagnosis. METHODS Data from 4,560 women with invasive breast cancer who had taken part in the population-based Studies of Epidemiology and Risk Factors in Cancer Heredity (SEARCH) breast cancer study were used to investigate the influence on survival of variables related to pregnancy, menarche and menopause, prior use of exogenous hormones, height, weight, body mass index (BMI), smoking history, and alcohol intake. RESULTS In univariate analyses, there was no association between prognosis and age at menarche and menopause, menopausal status at diagnosis, smoking history, or prior use of the oral contraceptive pill. Women whose most recent pregnancy was more than 30 years ago had a 35% reduced risk of dying (95% CI, 8% to 54%) compared with women who had a full-term pregnancy in the past 15 years, and the use of hormone replacement therapy for more than 4 years was associated with a similar risk reduction. BMI was associated with a 3% (95% CI, 1% to 4%) increase in mortality per unit increase. Improved prognosis was seen with increasing current alcohol consumption, with a 2% (95% CI, 1% to 3%) reduction in the risk of death per unit of alcohol consumed per week. CONCLUSION The apparent benefit of alcohol intake has not been described before, and our data need to be interpreted with some caution. However, our finding that an increase in BMI is associated with a poorer prognosis supports previously published data and suggests that advice on weight loss should be given to all obese patients with breast cancer.


Journal of Clinical Oncology | 2012

CHEK2*1100delC Heterozygosity in Women With Breast Cancer Associated With Early Death, Breast Cancer–Specific Death, and Increased Risk of a Second Breast Cancer

Maren Weischer; Børge G. Nordestgaard; Paul Pharoah; Manjeet K. Bolla; Heli Nevanlinna; Laura J. van't Veer; Montserrat Garcia-Closas; John L. Hopper; Per Hall; Irene L. Andrulis; Peter Devilee; Peter A. Fasching; Hoda Anton-Culver; Diether Lambrechts; Maartje J. Hooning; Angela Cox; Graham G. Giles; Barbara Burwinkel; Annika Lindblom; Fergus J. Couch; Arto Mannermaa; Grethe Grenaker Alnæs; Esther M. John; Thilo Dörk; Henrik Flyger; Alison M. Dunning; Qin Wang; Taru A. Muranen; Richard van Hien; Jonine D. Figueroa

PURPOSE We tested the hypotheses that CHEK2*1100delC heterozygosity is associated with increased risk of early death, breast cancer-specific death, and risk of a second breast cancer in women with a first breast cancer. PATIENTS AND METHODS From 22 studies participating in the Breast Cancer Association Consortium, 25,571 white women with invasive breast cancer were genotyped for CHEK2*1100delC and observed for up to 20 years (median, 6.6 years). We examined risk of early death and breast cancer-specific death by estrogen receptor status and risk of a second breast cancer after a first breast cancer in prospective studies. RESULTS CHEK2*1100delC heterozygosity was found in 459 patients (1.8%). In women with estrogen receptor-positive breast cancer, multifactorially adjusted hazard ratios for heterozygotes versus noncarriers were 1.43 (95% CI, 1.12 to 1.82; log-rank P = .004) for early death and 1.63 (95% CI, 1.24 to 2.15; log-rank P < .001) for breast cancer-specific death. In all women, hazard ratio for a second breast cancer was 2.77 (95% CI, 2.00 to 3.83; log-rank P < .001) increasing to 3.52 (95% CI, 2.35 to 5.27; log-rank P < .001) in women with estrogen receptor-positive first breast cancer only. CONCLUSION Among women with estrogen receptor-positive breast cancer, CHEK2*1100delC heterozygosity was associated with a 1.4-fold risk of early death, a 1.6-fold risk of breast cancer-specific death, and a 3.5-fold risk of a second breast cancer. This is one of the few examples of a genetic factor that influences long-term prognosis being documented in an extensive series of women with breast cancer.


Breast Cancer Research | 2010

Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study.

Roger L. Milne; Mia M. Gaudet; Amanda B. Spurdle; Peter A. Fasching; Fergus J. Couch; Javier Benitez; Jose Ignacio Arias Perez; M. Pilar Zamora; Núria Malats; Isabel dos Santos Silva; Lorna Gibson; Olivia Fletcher; Nichola Johnson; Hoda Anton-Culver; Argyrios Ziogas; Jonine D. Figueroa; Louise A. Brinton; Mark E. Sherman; Jolanta Lissowska; John L. Hopper; Gillian S. Dite; Carmel Apicella; Melissa C. Southey; Alice J. Sigurdson; Martha S. Linet; Sara J. Schonfeld; D. Michal Freedman; Arto Mannermaa; Veli-Matti Kosma; Vesa Kataja

IntroductionSeveral common breast cancer genetic susceptibility variants have recently been identified. We aimed to determine how these variants combine with a subset of other known risk factors to influence breast cancer risk in white women of European ancestry using case-control studies participating in the Breast Cancer Association Consortium.MethodsWe evaluated two-way interactions between each of age at menarche, ever having had a live birth, number of live births, age at first birth and body mass index (BMI) and each of 12 single nucleotide polymorphisms (SNPs) (10q26-rs2981582 (FGFR2), 8q24-rs13281615, 11p15-rs3817198 (LSP1), 5q11-rs889312 (MAP3K1), 16q12-rs3803662 (TOX3), 2q35-rs13387042, 5p12-rs10941679 (MRPS30), 17q23-rs6504950 (COX11), 3p24-rs4973768 (SLC4A7), CASP8-rs17468277, TGFB1-rs1982073 and ESR1-rs3020314). Interactions were tested for by fitting logistic regression models including per-allele and linear trend main effects for SNPs and risk factors, respectively, and single-parameter interaction terms for linear departure from independent multiplicative effects.ResultsThese analyses were applied to data for up to 26,349 invasive breast cancer cases and up to 32,208 controls from 21 case-control studies. No statistical evidence of interaction was observed beyond that expected by chance. Analyses were repeated using data from 11 population-based studies, and results were very similar.ConclusionsThe relative risks for breast cancer associated with the common susceptibility variants identified to date do not appear to vary across women with different reproductive histories or body mass index (BMI). The assumption of multiplicative combined effects for these established genetic and other risk factors in risk prediction models appears justified.


Human Molecular Genetics | 2013

A genome-wide association scan (GWAS) for mean telomere length within the COGS project: identified loci show little association with hormone-related cancer risk

Karen A. Pooley; Stig E. Bojesen; Maren Weischer; Sune F. Nielsen; Deborah Thompson; Ali Amin Al Olama; Kyriaki Michailidou; Jonathan Tyrer; Sara Benlloch; Judith E. Brown; Tina Audley; Robert Luben; Kay-Tee Khaw; David E. Neal; Freddie C. Hamdy; Jenny Donovan; Zsofia Kote-Jarai; Caroline Baynes; Mitul Shah; Manjeet K. Bolla; Qin Wang; Joe Dennis; Ed Dicks; Rongxi Yang; Anja Rudolph; Joellen M. Schildkraut; Jenny Chang-Claude; Barbara Burwinkel; Georgia Chenevix-Trench; Paul Pharoah

Mean telomere length (TL) in blood cells is heritable and has been reported to be associated with risks of several diseases, including cancer. We conducted a meta-analysis of three GWAS for TL (total n=2240) and selected 1629 variants for replication via the “iCOGS” custom genotyping array. All ∼200 000 iCOGS variants were analysed with TL, and those displaying associations in healthy controls (n = 15 065) were further tested in breast cancer cases (n = 11 024). We found a novel TL association (Ptrend < 4 × 10−10) at 3p14.4 close to PXK and evidence (Ptrend < 7 × 10−7) for TL loci at 6p22.1 (ZNF311) and 20q11.2 (BCL2L1). We additionally confirmed (Ptrend < 5 × 10−14) the previously reported loci at 3q26.2 (TERC), 5p15.3 (TERT) and 10q24.3 (OBFC1) and found supportive evidence (Ptrend < 5 × 10−4) for the published loci at 2p16.2 (ACYP2), 4q32.2 (NAF1) and 20q13.3 (RTEL1). SNPs tagging these loci explain TL differences of up to 731 bp (corresponding to 18% of total TL in healthy individuals), however, they display little direct evidence for association with breast, ovarian or prostate cancer risks.


Human Molecular Genetics | 2012

The role of genetic breast cancer susceptibility variants as prognostic factors

Peter A. Fasching; Paul Pharoah; Angela Cox; Heli Nevanlinna; Stig E. Bojesen; Thomas Karn; Annegien Broeks; Flora E. van Leeuwen; Laura J. van't Veer; Renate Udo; Alison M. Dunning; Dario Greco; Kristiina Aittomäki; Carl Blomqvist; Mitul Shah; Børge G. Nordestgaard; Henrik Flyger; John L. Hopper; Melissa C. Southey; Carmel Apicella; Montserrat Garcia-Closas; Mark E. Sherman; Jolanta Lissowska; Caroline Seynaeve; Petra E A Huijts; Rob A. E. M. Tollenaar; Argyrios Ziogas; Arif B. Ekici; Claudia Rauh; Arto Mannermaa

Recent genome-wide association studies identified 11 single nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk. We investigated these and 62 other SNPs for their prognostic relevance. Confirmed BC risk SNPs rs17468277 (CASP8), rs1982073 (TGFB1), rs2981582 (FGFR2), rs13281615 (8q24), rs3817198 (LSP1), rs889312 (MAP3K1), rs3803662 (TOX3), rs13387042 (2q35), rs4973768 (SLC4A7), rs6504950 (COX11) and rs10941679 (5p12) were genotyped for 25 853 BC patients with the available follow-up; 62 other SNPs, which have been suggested as BC risk SNPs by a GWAS or as candidate SNPs from individual studies, were genotyped for replication purposes in subsets of these patients. Cox proportional hazard models were used to test the association of these SNPs with overall survival (OS) and BC-specific survival (BCS). For the confirmed loci, we performed an accessory analysis of publicly available gene expression data and the prognosis in a different patient group. One of the 11 SNPs, rs3803662 (TOX3) and none of the 62 candidate/GWAS SNPs were associated with OS and/or BCS at P<0.01. The genotypic-specific survival for rs3803662 suggested a recessive mode of action [hazard ratio (HR) of rare homozygous carriers=1.21; 95% CI: 1.09-1.35, P=0.0002 and HR=1.29; 95% CI: 1.12-1.47, P=0.0003 for OS and BCS, respectively]. This association was seen similarly in all analyzed tumor subgroups defined by nodal status, tumor size, grade and estrogen receptor. Breast tumor expression of these genes was not associated with prognosis. With the exception of rs3803662 (TOX3), there was no evidence that any of the SNPs associated with BC susceptibility were associated with the BC survival. Survival may be influenced by a distinct set of germline variants from those influencing susceptibility.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Rat Mcs5a is a compound quantitative trait locus with orthologous human loci that associate with breast cancer risk

David J. Samuelson; Stephanie E. Hesselson; Beth A. Aperavich; Yunhong Zan; Jill D. Haag; Amy Trentham-Dietz; John M. Hampton; Bob Mau; Kai-Shun Chen; Caroline Baynes; Kay-Tee Khaw; Robert Luben; Barbara Perkins; Mitul Shah; Paul Pharoah; Alison M. Dunning; Doug Easton; Bruce A.J. Ponder; Michael N. Gould

Breast cancer risk is a polygenic trait. To identify breast cancer modifier alleles that have a high population frequency and low penetrance we used a comparative genomics approach. Quantitative trait loci (QTL) were initially identified by linkage analysis in a rat mammary carcinogenesis model followed by verification in congenic rats carrying the specific QTL allele under study. The Mcs5a locus was identified by fine-mapping Mcs5 in a congenic model. Here we characterize the Mcs5a locus, which when homozygous for the Wky allele, reduces mammary cancer risk by 50%. The Mcs5a locus is a compound QTL with at least two noncoding interacting elements: Mcs5a1 and Mcs5a2. The resistance phenotype is only observed in rats carrying at least one copy of the Wky allele of each element on the same chromosome. Mcs5a1 is located within the ubiquitin ligase Fbxo10, whereas Mcs5a2 includes the 5′ portion of Frmpd1. Resistant congenic rats show a down-regulation of Fbxo10 in the thymus and an up-regulation of Frmpd1 in the spleen. The association of the Mcs5a1 and Mcs5a2 human orthologs with breast cancer was tested in two population-based breast cancer case-control studies (≈12,000 women). The minor alleles of rs6476643 (MCS5A1) and rs2182317 (MCS5A2) were independently associated with breast cancer risk. The minor allele of rs6476643 increases risk, whereas the rs2182317 minor allele decreases risk. Both alleles have a high population frequency and a low penetrance toward breast cancer risk.


Cancer Epidemiology, Biomarkers & Prevention | 2010

ESR1/SYNE1 polymorphism and invasive epithelial ovarian cancer risk: an Ovarian Cancer Association Consortium study.

Jennifer A. Doherty; Mary Anne Rossing; Kara L. Cushing-Haugen; Chu Chen; David Van Den Berg; Anna H. Wu; Malcolm C. Pike; Roberta B. Ness; Kirsten B. Moysich; Georgia Chenevix-Trench; Jonathan Beesley; Penelope M. Webb; Jenny Chang-Claude; Shan Wang-Gohrke; Marc T. Goodman; Galina Lurie; Pamela J. Thompson; Michael E. Carney; Estrid Høgdall; Susanne K. Kjaer; Claus Høgdall; Ellen L. Goode; Julie M. Cunningham; Brooke L. Fridley; Robert A. Vierkant; Andrew Berchuck; Patricia G. Moorman; Joellen M. Schildkraut; Rachel T. Palmieri; Daniel W. Cramer

We genotyped 13 single nucleotide polymorphisms (SNPs) in the estrogen receptor alpha gene (ESR1) region in three population-based case-control studies of epithelial ovarian cancer conducted in the United States, comprising a total of 1,128 and 1,866 non-Hispanic white invasive cases and controls, respectively. A SNP 19 kb downstream of ESR1 (rs2295190, G-to-T change) was associated with invasive ovarian cancer risk, with a per-T-allele odds ratio (OR) of 1.24 [95% confidence interval (CI), 1.06-1.44, P = 0.006]. rs2295190 is a nonsynonymous coding SNP in a neighboring gene called spectrin repeat containing, nuclear envelope 1 (SYNE1), which is involved in nuclear organization and structural integrity, function of the Golgi apparatus, and cytokinesis. An isoform encoded by SYNE1 has been reported to be downregulated in ovarian and other cancers. rs2295190 was genotyped in an additional 12 studies through the Ovarian Cancer Association Consortium, with 5,279 invasive epithelial cases and 7,450 controls. The per-T-allele OR for this 12-study set was 1.09 (95% CI, 1.02-1.17; P = 0.017). Results for the serous subtype in the 15 combined studies were similar to those overall (n = 3,545; OR, 1.09; 95% CI, 1.01-1.18; P = 0.025), and our findings were strongest for the mucinous subtype (n = 447; OR, 1.32; 95% CI, 1.11-1.58; P = 0.002). No association was observed for the endometrioid subtype. In an additional analysis of 1,459 borderline ovarian cancer cases and 7,370 controls, rs2295190 was not associated with risk. These data provide suggestive evidence that the rs2295190 T allele, or another allele in linkage disequilibrium with it, may be associated with increased risk of invasive ovarian cancer. Cancer Epidemiol Biomarkers Prev; 19(1); 244–50


Cancer Epidemiology, Biomarkers & Prevention | 2010

No Association between TERT-CLPTM1L Single Nucleotide Polymorphism rs401681 and Mean Telomere Length or Cancer Risk

Karen A. Pooley; Jonathan Tyrer; Mitul Shah; Kristy Driver; Jean Leyland; Judith Brown; Tina Audley; Lesley McGuffog; Bruce A.J. Ponder; Paul Pharoah; Douglas F. Easton; Alison M. Dunning

Background: A recent study reported genetic variants in the TERT-CLPTM1L locus that were associated with mean telomere length, and with risk of multiple cancers. Methods: We evaluated the association between single nucleotide polymorphism (SNP) rs401681 (C > T) and mean telomere length, using quantitative real-time PCR, in blood-extracted DNA collected from 11,314 cancer-free participants from the Sisters in Breast Screening study, the Melanoma and Pigmented Lesions Evaluative Study melanoma family study, and the SEARCH Breast, Colorectal, Melanoma studies. We also examined the relationship between rs401618 genotype and susceptibility to breast cancer (6,800 cases and 6,608 controls), colorectal cancer (2,259 cases and 2,181 controls), and melanoma (787 cases and 999 controls). Results: The “per T allele” change in mean telomere length (ΔCt), adjusted for age, study plate, gender, and family was 0.001 [95% confidence intervals (CI), 0.01-0.02; P trend = 0.61]. The “per T allele” odds ratio for each cancer was 1.01 for breast cancer (95% CI, 0.96-1.06; P trend = 0.64), 1.02 for colorectal cancer (95% CI, 0.94-1.11; P trend = 0.66), and 0.99 for melanoma (95% CI, 0.84-1.15; P trend = 0.87). Conclusions: We found no evidence that this SNP was associated with mean telomere length, or with risk of breast cancer, colorectal cancer, or melanoma. Impact: Our results indicate that the observed associations between rs401681 and several cancer types might be weaker than previously described. The lack of an association in our study between this SNP and mean telomere length suggests that any association with cancer risk at this locus is not mediated through TERT. Cancer Epidemiol Biomarkers Prev; 19(7); 1862‐5. ©2010 AACR.


International Journal of Cancer | 2009

Common germline polymorphisms in COMT, CYP19A1, ESR1, PGR, SULT1E1 and STS and survival after a diagnosis of breast cancer

Miriam S. Udler; Elizabeth M. Azzato; Catherine S. Healey; Shahana Ahmed; Karen A. Pooley; David Greenberg; Mitul Shah; Andrew E. Teschendorff; Carlos Caldas; Alison M. Dunning; Elaine A. Ostrander; Neil E. Caporaso; Douglas F. Easton; Paul Pharoah

Although preliminary evidence suggests that germline variation in genes involved in steroid hormone metabolism may alter breast cancer prognosis, this has not been systematically evaluated. We examined associations between germline polymorphisms in 6 genes involved in the steroid hormone metabolism and signaling pathway (COMT, CYP19A1, ESR1, PGR, SULT1E1, STS) and survival among women with breast cancer participating in SEARCH, a population‐based case–control study. Blood samples from up to 4,470 women were genotyped for 4 possible functional SNPs in CYP19A1 and 106 SNPs tagging the common variation in the remainder of the genes. The genotypes of each polymorphism were tested for association with survival after breast cancer diagnosis using Cox regression analysis. Significant evidence of an association was observed for a COMT polymorphism (rs4818 p = 0.016) under the codominant model. This SNP appeared to fit a dominant model better (HR = 0.80 95% CI: 0.69–0.95, p = 0.009); however, the result was only marginally significant after permutation analysis adjustment for multiple hypothesis tests (p = 0.047). To further evaluate this finding, somatic expression microarray data from 8 publicly available datasets were used to test the association between survival and tumor COMT gene expression; no statistically significant associations were observed. A correlated SNP in COMT, rs4860, has recently been associated with breast cancer prognosis in Chinese women in a dominant model. These results suggest that COMT rs4818, or a variant it tags, is associated with breast cancer prognosis. Further study of COMT and its putative association with breast cancer prognosis is warranted.

Collaboration


Dive into the Mitul Shah's collaboration.

Top Co-Authors

Avatar

Paul Pharoah

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter A. Fasching

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Joe Dennis

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Penelope M. Webb

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qin Wang

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthias W. Beckmann

University of Erlangen-Nuremberg

View shared research outputs
Researchain Logo
Decentralizing Knowledge