Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miyi Yang is active.

Publication


Featured researches published by Miyi Yang.


Journal of Chromatography A | 2012

Magnetic retrieval of ionic liquids: Fast dispersive liquid–liquid microextraction for the determination of benzoylurea insecticides in environmental water samples

Jiaheng Zhang; Min Li; Miyi Yang; Bing Peng; Yubo Li; Wenfeng Zhou; Haixiang Gao; Runhua Lu

A novel, rapid ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) technique combined with magnetic retrieval (MR-IL-DLLME) has been developed and used to analyze five benzoylurea insecticides (BUs) in environmental water samples. This procedure was based on the magnetic retrieval of the ionic liquid using unmodified magnetic nanoparticles (MNPs). In this experiment, the fine ionic liquid droplets formed in aqueous samples functioned as an extractant for the extraction of BUs; after the extraction process was completed, Fe₃O₄ MNPs were added as a carrier to retrieve and separate the ionic liquid from the sample solution. After the supernatant was removed, the ionic liquid was desorbed using acetonitrile and subsequently injected directly into an HPLC system for analysis. The optimum experimental parameters are as follows: 20 mg of Fe₃O₄ (20 nm) as magnetic sorbents; 70 μL of [C₆MIM][PF₆] as the extraction solvent; 300 μL of acetonitrile as the disperser solvent; a vortex extraction time of 90 s with the vortex agitator set at 2800 rpm and no ionic strength. Under the optimized conditions, good linearity was obtained with correlation coefficients (r) greater than 0.9981. The repeatability and reproducibility of the proposed method were found to be good, and the limits of detection ranged from 0.05 μg L⁻¹ to 0.15 μg L⁻¹. The proposed method was then successfully used for the rapid determination of BUs in real water samples. The recoveries of five BUs at two spiked levels ranged from 79.8 to 91.7% with RSDs less than 6.0%.


Journal of Chromatography A | 2015

Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples

Miyi Yang; Xuefei Xi; Xiaoling Wu; Runhua Lu; Wenfeng Zhou; Sanbing Zhang; Haixiang Gao

A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique.


Journal of Chromatography A | 2014

Ionic liquid-assisted liquid-phase microextraction based on the solidification of floating organic droplets combined with high performance liquid chromatography for the determination of benzoylurea insecticide in fruit juice.

Miyi Yang; Panjie Zhang; Lu Hu; Runhua Lu; Wenfeng Zhou; Sanbing Zhang; Haixiang Gao

A green, simple, and efficient method, ionic liquid-assisted liquid-liquid microextraction based on the solidification of floating organic droplets (ILSFOD-LLME) collected via a bell-shaped collection device (BSCD) coupled to high performance liquid chromatography with a variable-wavelength detector, was developed for the preconcentration and analysis of seven benzoylurea insecticides (BUs) in fruit juice. In the proposed method, the low-density solvent 1-dodecanol and the ionic liquid trihexyl(tetradecyl)phosphonium hexafluorophosphate ([P14, 6, 6, 6]PF6) were used as extractant. The extraction solvent droplet was easily collected and separated by the BSCD without centrifugation. The experimental parameters were optimized by the one-factor-at-a-time approach and were followed using an orthogonal array design. The results indicated the different effects of each parameter for extraction efficiency. Under the optimal conditions in the water model, the limits of detection for the analytes varied from 0.03 to 0.28μgL(-1). The enrichment factors ranged from 160 to 246. Linearities were achieved for hexaflumuron and flufenoxuron in the range of 0.5-500μgL(-1), for triflumuron, lufenuron and diafenthiuron in the range of 1-500μgL(-1), and for diflubenzuron and chlorfluazuron in the range of 5-500μgL(-1); the correlation coefficients for the BUs ranged from 0.9960 to 0.9990 with recoveries of 75.6-113.9%. Finally, the developed technique was successfully applied to real fruit juice with acceptable results. The relative standard deviations (RSDs) of the seven BUs at two spiked levels (50 and 200μgL(-1)) varied between 0.1% and 7.3%.


RSC Advances | 2015

Determination of benzoylurea insecticides in environmental water and honey samples using ionic-liquid-mingled air-assisted liquid–liquid microextraction based on solidification of floating organic droplets

Miyi Yang; Xuefei Xi; Xiaoling Yang; Lizhen Bai; Runhua Lu; Wenfeng Zhou; Sanbing Zhang; Haixiang Gao

A novel and simple ionic-liquid-mingled air-assisted liquid–liquid microextraction based on solidification of floating organic droplets combined with high performance liquid chromatography was developed for the determination of six benzoylureas (BUs) in water and honey samples. In this method, a mixture of low-density and low melting point extraction solvents and aqueous sample solutions was rapidly sucked up and injected several times using a glass syringe. The influence of the main factors on the efficiency of this procedure is studied. Under the optimal conditions, the enrichment factors (EFs) for BUs were acquired in the range of 144 to 187, limits of detection (LODs) were between 0.01 and 0.1 μg L−1 and limits of quantitation (LOQs) were changed in the range of 0.03 and 0.33 μg L−1. The obtained extraction recoveries ranged from 84.03% to 109.20% with intra-day lower than 4.5%, and inter-day precision lower than 6.5%. The method is successfully applied to determine the BUs in environmental water and honey samples with recoveries in the range of 78.57–109.72%, which proved the potential use of this method in real samples.


Journal of Separation Science | 2014

Optimization of dispersive liquid–liquid microextraction based on the solidification of floating organic droplets using an orthogonal array design and its application for the determination of fungicide concentrations in environmental water samples

Xiaoling Yang; Miyi Yang; Bang Hou; Songqing Li; Ying Zhang; Runhua Lu; Sanbing Zhang

A dispersive liquid-liquid microextraction method based on the solidification of floating organic droplets was developed as a simple and sensitive method for the simultaneous determination of the concentrations of multiple fungicides (triazolone, chlorothalonil, cyprodinil, and trifloxystrobin) in water by high-performance liquid chromatography with variable-wavelength detection. After an approach varying one factor at a time was used, an orthogonal array design [L25 (5(5))] was employed to optimize the method and to determine the interactions between the parameters. The significance of the effects of the different factors was determined using analysis of variance. The results indicated that the extraction solvent volume significantly affects the efficiency of the extraction. Under optimal conditions, the relative standard deviation (n = 5) varied from 2.3 to 5.5% at 0.1 μg/mL for each analyte. Low limits of detection were obtained and ranged from 0.02 to 0.2 ng/mL. In addition, the proposed method was applied to the analysis of fungicides in real water samples. The results show that the dispersive liquid-liquid microextraction based on the solidification of floating organic droplets is a potential method for detecting fungicides in environmental water samples, with recoveries of the target analytes ranging from 70.1 to 102.5%.


Food Chemistry | 2016

Using β-cyclodextrin/attapulgite-immobilized ionic liquid as sorbent in dispersive solid-phase microextraction to detect the benzoylurea insecticide contents of honey and tea beverages.

Miyi Yang; Xiaoling Wu; Xuefei Xi; Panjie Zhang; Xiaoling Yang; Runhua Lu; Wenfeng Zhou; Sanbing Zhang; Haixiang Gao; Jian-Yong Li

A green, simple, inexpensive dispersive solid-phase microextraction method coupled with high-performance liquid chromatography was developed for rapid screening and selective recognition of benzoylurea insecticides (BUs) in honey and tea beverages. A novel adsorbent, ionic liquid (IL)-modified β-cyclodextrin/attapulgite (β-CD/ATP), was prepared by immobilizing IL on the surface of β-CD/ATP. A series of demanding extraction conditions were investigated through the experimental design. Under optimum conditions, the limits of detection for the analytes varied from 0.12 to 0.21 μg L(-1). The enrichment factors ranged from 112 to 150 folds. Linearities in the range of 5-500 ng m L(-1) were achieved for four BUs, while the correlation coefficients ranged from 0.9997 to 1.0000 and the recoveries from 84.5% to 104.7%. The precision of this method for the four BUs corresponded to intra-day and inter-day RSDs% lower than 3.85%. Finally, the proposed technique was applied for the preconcentration of the BUs from real samples with satisfactory results.


Analytica Chimica Acta | 2015

β-CD/ATP composite materials for use in dispersive solid-phase extraction to measure (fluoro)quinolone antibiotics in honey samples

Xiangqian Cui; Panjie Zhang; Xiaoling Yang; Miyi Yang; Wenfeng Zhou; Sanbin Zhang; Haixiang Gao; Runhua Lu

A novel sorbent (β-CD/ATP composite) for dispersive solid-phase extraction (d-SPE) prepared by bonding β-cyclodextrin to modified attapulgite via silane coupling was used to determine the concentrations of four (fluoro)quinolones (Qs) in honey samples. The subsequent quantification of the Qs (ciprofloxacin, norfloxacin, ofloxacin, and gatifloxacin) was accomplished using high-performance liquid chromatography (HPLC) with ultraviolet detection after the d-SPE procedure. Parameters that may influence the extraction efficiency, such as type and volume of the eluent, type and amount of the sorbent, times of the vortex and sonication process, and pH of the sample, were investigated using batch and column procedures. The optimal experimental conditions (5 mL sample at pH 3, 4 mg of β-CD/ATP composite as the sorbent, 200 μL of 40% ammonia in methanol as the eluent, with vortex time 60s and sonication time 6 min, and no addition of salt) were obtained from this statistical evaluation. The limits of detection (LODs) were determined to the range from 0.30 to 3.95 μg L(-1). Good recoveries (83.6-88.6%) were obtained under the optimum conditions, and the relative standard deviations (RSDs), which are used to indicate reproducibility, were less than 7.4%. The method was validated with three real honey samples, and the results demonstrated that β-CD/ATP composite possessed a high adsorption capacity for Qs. Although the LODs were slightly higher than expected, this study confirmed the possibility of using cyclodextrin grafted palygorskite in analytical applications.


Food Chemistry | 2018

Rapid analysis of fungicides in tea infusions using ionic liquid immobilized fabric phase sorptive extraction with the assistance of surfactant Fungicides analysis using IL-FPSE assisted with surfactant

Miyi Yang; Yihan Gu; Xiaoling Wu; Xuefei Xi; Xiaoling Yang; Wenfeng Zhou; Haozhe Zeng; Sanbing Zhang; Runhua Lu; Haixiang Gao; Jing Li

A green, simple, inexpensive, and sensitive ionic liquid immobilized fabric phase sorptive extraction method coupled with high performance liquid chromatography was developed for rapid screening and simultaneous determination of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) residues in tea infusions. This IL modified extraction fiber is capable of extracting target analytes directly from complicated tea water matrices with the addition of surfactant. A series of extraction conditions were investigated by one-factor-at-a-time approach and orthogonal test. After a series experiments, the optimum conditions were found to be 10% [HIMIM]NTf2 as coating solution, 2min vortex time, 500μL acetonitrile as dispersive solvent and 2min desorption time. Under the above conditions, the proposed technique was applied to detect fungicides from real tea water samples with satisfactory results.


Journal of Separation Science | 2014

Nonwoven polypropylene as a novel extractant phase holder for the determination of insecticides in environmental water samples

Lu Hu; Songqing Li; Panjie Zhang; Xiaoling Yang; Miyi Yang; Runhua Lu; Haixiang Gao

In this work, a novel liquid-phase microextraction approach using nonwoven polypropylene as the extraction solvent holder was developed. Nonwoven polypropylene, a hydrophobic material, is widely used in the cleanup of oil spills. Due to its large surface area, efficient, and full extraction can be achieved. Nonwoven polypropylene containing an ionic liquid was used to extract benzoylurea insecticides (diflubenzuron, teflubenzuron, flufenoxuron, and chlorfluazuron) through vortex-assisted liquid-liquid microextraction. The parameters that affected the extraction efficiency included the type and volume of the extractant, the extraction time, the time and solvent volume for desorption and the mass and surface area of the nonwoven polypropylene. Under the optimized conditions, good linearity was obtained, with coefficients of determination greater than 0.9996, and the limit of detections of these compounds, calculated at S/N = 3, were in the range of 0.73-5.0 ng/mL. The recoveries of the four insecticides at two spiked levels ranged from 93.3 to 102.0%, with relative standard deviations of less than 4.0%. The proposed method was then successfully used for the rapid determination of benzoylurea insecticides in spiked real water samples before liquid chromatographic analysis. The procedure is simple, inexpensive, easy to execute, and can be widely used.


Journal of Separation Science | 2017

Dispersive liquid–liquid microextraction based on the solidification of deep eutectic solvent for the determination of benzoylureas in environmental water samples

Haozhe Zeng; Kexin Qiao; Xin Li; Miyi Yang; Sanbing Zhang; Runhua Lu; Jing Li; Haixiang Gao; Wenfeng Zhou

We present a novel dispersive liquid-liquid microextraction method based on the solidification of deep eutectic solvent coupled with high-performance liquid chromatography with a variable-wavelength detection for the detection of five benzoylureas in real water samples. In this work, a green solvent consisting of 1-octyl-3-methylimidazolium chloride and 1-dodecanol was used as an extraction solvent, yielding the advantages of material stability, low density, and a suitable freezing point near room temperature. Parameters that significantly affect extraction efficiency were optimized by the one-factor-at-a-time approach. Under optimal conditions, the recoveries of five target compounds were obtained ranging from 87.39 to 98.05% with correlation coefficients ranging from 0.9994 to 0.9997 for pure water. The limits of detection were in the range of 0.09-0.16 μg/L. The enrichment factors were in the range of 171-188. Linearities were achieved in the range of 0.5-500 μg/L. The proposed method was successfully applied to determine benzoylureas in environmental water samples with a satisfactory recovery of approximately 81.38-97.67%.

Collaboration


Dive into the Miyi Yang's collaboration.

Top Co-Authors

Avatar

Runhua Lu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haixiang Gao

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Sanbing Zhang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wenfeng Zhou

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoling Yang

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaoling Wu

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xuefei Xi

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Haozhe Zeng

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jing Li

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Panjie Zhang

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge