Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miyoshi Haruta is active.

Publication


Featured researches published by Miyoshi Haruta.


Nature | 2008

The Phaeodactylum genome reveals the evolutionary history of diatom genomes.

Chris Bowler; Andrew E. Allen; Jonathan H. Badger; Jane Grimwood; Kamel Jabbari; Alan Kuo; Uma Maheswari; Cindy Martens; Florian Maumus; Robert Otillar; Edda Rayko; Asaf Salamov; Klaas Vandepoele; Bank Beszteri; Ansgar Gruber; Marc Heijde; Michael Katinka; Thomas Mock; Klaus Valentin; Frederic Verret; John A. Berges; Colin Brownlee; Jean-Paul Cadoret; Chang Jae Choi; Sacha Coesel; Alessandra De Martino; J. Chris Detter; Colleen Durkin; Angela Falciatore; Jérome Fournet

Diatoms are photosynthetic secondary endosymbionts found throughout marine and freshwater environments, and are believed to be responsible for around one-fifth of the primary productivity on Earth. The genome sequence of the marine centric diatom Thalassiosira pseudonana was recently reported, revealing a wealth of information about diatom biology. Here we report the complete genome sequence of the pennate diatom Phaeodactylum tricornutum and compare it with that of T. pseudonana to clarify evolutionary origins, functional significance and ubiquity of these features throughout diatoms. In spite of the fact that the pennate and centric lineages have only been diverging for 90 million years, their genome structures are dramatically different and a substantial fraction of genes (∼40%) are not shared by these representatives of the two lineages. Analysis of molecular divergence compared with yeasts and metazoans reveals rapid rates of gene diversification in diatoms. Contributing factors include selective gene family expansions, differential losses and gains of genes and introns, and differential mobilization of transposable elements. Most significantly, we document the presence of hundreds of genes from bacteria. More than 300 of these gene transfers are found in both diatoms, attesting to their ancient origins, and many are likely to provide novel possibilities for metabolite management and for perception of environmental signals. These findings go a long way towards explaining the incredible diversity and success of the diatoms in contemporary oceans.


Science | 2014

A Peptide Hormone and Its Receptor Protein Kinase Regulate Plant Cell Expansion

Miyoshi Haruta; Grzegorz Sabat; Kelly Stecker; Benjamin B. Minkoff; Michael R. Sussman

Plant cells are immobile; thus, plant growth and development depend on cell expansion rather than cell migration. The molecular mechanism by which the plasma membrane initiates changes in the cell expansion rate remains elusive. We found that a secreted peptide, RALF (rapid alkalinization factor), suppresses cell elongation of the primary root by activating the cell surface receptor FERONIA in Arabidopsis thaliana. A direct peptide-receptor interaction is supported by specific binding of RALF to FERONIA and reduced binding and insensitivity to RALF-induced growth inhibition in feronia mutants. Phosphoproteome measurements demonstrate that the RALF-FERONIA interaction causes phosphorylation of plasma membrane H+–adenosine triphosphatase 2 at Ser899, mediating the inhibition of proton transport. The results reveal a molecular mechanism for RALF-induced extracellular alkalinization and a signaling pathway that regulates cell expansion. A signaling system important in the regulation of plant cell size during development is identified. A Peptide Finds Its Receptor Because plant cells cannot move around within the plant, developmental changes are orchestrated by changes in cell size and shape. Using quantitative phosphoproteomics, genetics, and chemical analyses, Haruta et al. (p. 408) identified a signaling chain that links a secreted peptide, RALF (rapid alkalinization factor), with its receptor kinase, FERONIA, at the cell surface. FERONIA is involved in reproductive and vegetative development–processes that require the changes in cell size initiated by RALF signaling.


Journal of Biological Chemistry | 2010

Molecular Characterization of Mutant Arabidopsis Plants with Reduced Plasma Membrane Proton Pump Activity

Miyoshi Haruta; Heather L. Burch; Rachel B. Nelson; Greg Barrett-Wilt; Kelli G. Kline; Sheher B. Mohsin; Jeffery C. Young; Marisa S. Otegui; Michael R. Sussman

Arabidopsis mutants containing gene disruptions in AHA1 and AHA2, the two most highly expressed isoforms of the Arabidopsis plasma membrane H+-ATPase family, have been isolated and characterized. Plants containing homozygous loss-of-function mutations in either gene grew normally under laboratory conditions. Transcriptome and mass spectrometric measurements demonstrate that lack of lethality in the single gene mutations is not associated with compensation by increases in RNA or protein levels. Selected reaction monitoring using synthetic heavy isotope-labeled C-terminal tryptic peptides as spiked standards with a triple quadrupole mass spectrometer revealed increased levels of phosphorylation of a regulatory threonine residue in both isoforms in the mutants. Using an extracellular pH assay as a measure of in vivo ATPase activity in roots, less proton secreting activity was found in the aha2 mutant. Among 100 different growth conditions, those that decrease the membrane potential (high external potassium) or pH gradient (high external pH) caused a reduction in growth of the aha2 mutant compared with wild type. Despite the normal appearance of single mutants under ideal laboratory growth conditions, embryos containing homozygous double mutations are lethal, demonstrating that, as expected, this protein is absolutely essential for plant cell function. In conclusion, our results demonstrate that the two genes together perform an essential function and that the effects of their single mutations are mostly masked by overlapping patterns of expression and redundant function as well as by compensation at the post-translational level.


Plant Physiology | 2012

The Effect of a Genetically Reduced Plasma Membrane Protonmotive Force on Vegetative Growth of Arabidopsis

Miyoshi Haruta; Michael R. Sussman

The plasma membrane proton gradient is an essential feature of plant cells. In Arabidopsis (Arabidopsis thaliana), this gradient is generated by the plasma membrane proton pump encoded by a family of 11 genes (abbreviated as AHA, for Arabidopsis H+-ATPase), of which AHA1 and AHA2 are the two most predominantly expressed in seedlings and adult plants. Although double knockdown mutant plants containing T-DNA insertions in both genes are embryonic lethal, under ideal laboratory growth conditions, single knockdown mutant plants with a 50% reduction in proton pump concentration complete their life cycle without any observable growth alteration. However, when grown under conditions that induce stress on the plasma membrane protonmotive force (PMF), such as high external potassium to reduce the electrical gradient or high external pH to reduce the proton chemical gradient, aha2 mutant plants show a growth retardation compared with wild-type plants. In this report, we describe the results of studies that examine in greater detail AHA2’s specific role in maintaining the PMF during seedling growth. By comparing the wild type and aha2 mutants, we have measured the effects of a reduced PMF on root and hypocotyl growth, ATP-induced skewed root growth, and rapid cytoplasmic calcium spiking. In addition, genome-wide gene expression profiling revealed the up-regulation of potassium transporters in aha2 mutants, indicating, as predicted, a close link between the PMF and potassium uptake at the plasma membrane. Overall, this characterization of aha2 mutants provides an experimental and theoretical framework for investigating growth and signaling processes that are mediated by PMF-coupled energetics at the cell membrane.


Biochemistry | 2008

A cytoplasmic Ca2+ functional assay for identifying and purifying endogenous cell signaling peptides in Arabidopsis seedlings: identification of AtRALF1 peptide.

Miyoshi Haruta; Gabriele B. Monshausen; Simon Gilroy; Michael R. Sussman

Transient increases in the cytoplasmic Ca(2+) concentration are key events that initiate many cellular signaling pathways in response to developmental and environmental cues in plants; however, only a few extracellular mediators regulating cytoplasmic Ca(2+) singling are known to date. To identify endogenous cell signaling peptides regulating cytoplasmic Ca(2+) signaling, Arabidopsis seedlings expressing aequorin were used for an in vivo luminescence assay for Ca(2+) changes. These seedlings were challenged with fractions derived from plant extracts. Multiple heat-stable, protease-sensitive peaks of calcium elevating activity were observed after fractionation of these extracts by high-performance liquid chromatography. Tandem mass spectrometry identified the predominant active molecule isolated by a series of such chromatographic separations as a 49-amino acid polypeptide, AtRALF1 (the rapid alkalinization factor protein family). Within 40 s of treatment with nanomolar concentrations of the natural or synthetic version of the peptides, the cytoplasmic Ca(2+) level increased and reached its maximum. Prior treatment with a Ca(2+) chelator or inhibitor of IP 3-dependent signaling partially suppressed the AtRALF1-induced Ca(2+) concentration increase, indicating the likely involvement of Ca(2+) influx across the plasma membrane as well as release of Ca(2+) from intracellular reserves. Ca(2+) imaging using seedlings expressing the FRET-based Ca(2+) sensor yellow cameleon (YC) 3.6 showed that AtRALF1 could induce an elevation in Ca(2+) concentration in the surface cells of the root consistent with the very rapid effects of addition of AtRALF1 on Ca(2+) levels as reported by aequorin. Our data support a model in which the RALF peptide mediates Ca(2+)-dependent signaling events through a cell surface receptor, where it may play a role in eliciting events linked to stress responses or the modulation of growth.


Current Opinion in Plant Biology | 2015

Regulation of the plasma membrane proton pump (H+-ATPase) by phosphorylation

Miyoshi Haruta; William M. Gray; Michael R. Sussman

In plants and fungi, energetics at the plasma membrane is provided by a large protonmotive force (PMF) generated by the family of P-type ATPases specialized for proton transport (commonly called PM H(+)-ATPases or, in Arabidopsis, AHAs for Arabidopsis H(+)-ATPases). Studies have demonstrated that this 100-kDa protein is essential for plant growth and development. Posttranslational modifications of the H(+)-ATPase play crucial roles in its regulation. Phosphorylation of several Thr and Ser residues within the carboxy terminal regulatory domain composed of ∼100 amino acids change in response to environmental stimuli, endogenous hormones, and nutrient conditions. Recently developed mass spectrometric technologies provide a means to carefully quantify these changes in H(+)-ATPase phosphorylation at the different sites. These chemical modifications can then be genetically tested in planta by complementing the loss-of-function aha mutants with phosphomimetic mutations. Interestingly, recent data suggest that phosphatase-mediated changes in PM H(+)-ATPase phosphorylation are important in mediating auxin-regulated growth. Thus, as with another hormone (abscisic acid), dephosphorylation by phosphatases, rather than kinase mediated phosphorylation, may be an important focal point for regulation during plant signal transduction. Although interactions with other proteins have also been implicated in ATPase regulation, the very hydrophobic nature and high concentration of this polytopic protein presents special challenges in evaluating the biological significance of these interactions. Only by combining biochemical and genetic experiments can we attempt to meet these challenges to understand the essential molecular details by which this protein functions in planta.


Plant Physiology | 2018

Environmental and Genetic Factors Regulating Localization of the Plant Plasma Membrane H+-ATPase

Miyoshi Haruta; Li Xuan Tan; Daniel B. Bushey; Sarah J. Swanson; Michael R. Sussman

Cellular dynamics and localization of plasma membrane H+-ATPase is determined by cell type, light condition, and a receptor kinase, FERONIA, which regulates cell elongation growth. A P-type H+-ATPase is the primary transporter that converts ATP to electrochemical energy at the plasma membrane of higher plants. Its product, the proton-motive force, is composed of an electrical potential and a pH gradient. Many studies have demonstrated that this proton-motive force not only drives the secondary transporters required for nutrient uptake, but also plays a direct role in regulating cell expansion. Here, we have generated a transgenic Arabidopsis (Arabidopsis thaliana) plant expressing H+-ATPase isoform 2 (AHA2) that is translationally fused with a fluorescent protein and examined its cellular localization by live-cell microscopy. Using a 3D imaging approach with seedlings grown for various times under a variety of light intensities, we demonstrate that AHA2 localization at the plasma membrane of root cells requires light. In dim light conditions, AHA2 is found in intracellular compartments, in addition to the plasma membrane. This localization profile was age-dependent and specific to cell types found in the transition zone located between the meristem and elongation zones. The accumulation of AHA2 in intracellular compartments is consistent with reduced H+ secretion near the transition zone and the suppression of root growth. By examining AHA2 localization in a knockout mutant of a receptor protein kinase, FERONIA, we found that the intracellular accumulation of AHA2 in the transition zone is dependent on a functional FERONIA-dependent inhibitory response in root elongation. Overall, this study provides a molecular underpinning for understanding the genetic, environmental, and developmental factors influencing root growth via localization of the plasma membrane H+-ATPase.


Journal of Biological Chemistry | 2017

A cell-free method for expressing and reconstituting membrane proteins enables functional characterization of the plant receptor-like protein kinase FERONIA

Benjamin B. Minkoff; Shin-ichi Makino; Miyoshi Haruta; Emily T. Beebe; Russell L. Wrobel; Brian G. Fox; Michael R. Sussman

There are more than 600 receptor-like kinases (RLKs) in Arabidopsis, but due to challenges associated with the characterization of membrane proteins, only a few have known biological functions. The plant RLK FERONIA is a peptide receptor and has been implicated in plant growth regulation, but little is known about its molecular mechanism of action. To investigate the properties of this enzyme, we used a cell-free wheat germ-based expression system in which mRNA encoding FERONIA was co-expressed with mRNA encoding the membrane scaffold protein variant MSP1D1. With the addition of the lipid cardiolipin, assembly of these proteins into nanodiscs was initiated. FERONIA protein kinase activity in nanodiscs was higher than that of soluble protein and comparable with other heterologously expressed protein kinases. Truncation experiments revealed that the cytoplasmic juxtamembrane domain is necessary for maximal FERONIA activity, whereas the transmembrane domain is inhibitory. An ATP analogue that reacts with lysine residues inhibited catalytic activity and labeled four lysines; mutagenesis demonstrated that two of these, Lys-565 and Lys-663, coordinate ATP in the active site. Mass spectrometric phosphoproteomic measurements further identified phosphorylation sites that were examined using phosphomimetic mutagenesis. The results of these experiments are consistent with a model in which kinase-mediated phosphorylation within the C-terminal region is inhibitory and regulates catalytic activity. These data represent a step further toward understanding the molecular basis for the protein kinase catalytic activity of FERONIA and show promise for future characterization of eukaryotic membrane proteins.


FEBS Letters | 2018

Comparison of the effects of a kinase‐dead mutation of FERONIA on ovule fertilization and root growth of Arabidopsis

Miyoshi Haruta; Vilas Gaddameedi; Heather L. Burch; Donna E. Fernandez; Michael R. Sussman

A plasma membrane receptor protein kinase, FERONIA (FER), regulates various aspects of plant reproductive and vegetative growth. In roots, binding of a peptide ligand to FER causes rapid suppression of cell elongation whereas in ovules, FER is involved in gametophyte interactions. Here, we examined the effect of a mutation that eliminates kinase activity, on both ovule fertilization and root growth, using the same batch of seeds containing a kinase‐dead mutation. The kinase‐dead mutation of FER reduced the ability to complement fer‐4 knockout phenotypes, compared with wild‐type sequence in root, but not in ovules. Our results support a model in which cell type‐specific regulatory mechanisms, such as different interacting partners and/or downstream signaling events, lead to cell type‐specific functions of FER.


Biochemistry | 2018

Probing a Plant Plasma Membrane Receptor Kinase’s Three-Dimensional Structure Using Mass Spectrometry-Based Protein Footprinting

Pei Liu; Miyoshi Haruta; Benjamin B. Minkoff; Michael R. Sussman

FERONIA (FER), one of the 17 malectin-like receptor-like kinases encoded in the Arabidopsis genome, acts as a receptor for a 5 kDa growth-inhibiting secreted protein hormone, rapid alkalinization factor 1 (RALF1). Upon binding the peptide ligand, FER is involved in a variety of signaling pathways eliciting ovule fertilization and vegetative root cell expansion. Here, we report the use of mass spectrometry-based, carbodiimide-mediated protein carboxyl group (aspartic and glutamic acid) footprinting to map solvent accessible amino acids of the ectodomain of FER (ectoFER), including those involved in RALF1 binding and/or allosteric changes. Aspartate and glutamate residues labeled in this procedure were located in various regions, including the N-terminus, malectin-like domains, and juxtamembrane region, and these correlated well with a three-dimensional structural model of ectoFER predicted from the crystal structure of a related receptor. Covalent cross-linking experiments also revealed the N-terminus of ectoFER linked to the highly conserved C-terminus of RALF1. RALF1 binding assays performed with truncation mutants of ectoFER further implicated the receptor N-terminal and juxtamembrane regions in the binding of RALF1. In conclusion, our results of mass spectrometry-based footprinting methods provide a framework for understanding ligand-induced changes in solvent accessibility and their positions within the three-dimensional structure of a plant receptor kinase.

Collaboration


Dive into the Miyoshi Haruta's collaboration.

Top Co-Authors

Avatar

Michael R. Sussman

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Benjamin B. Minkoff

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Alan Kuo

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Andrew E. Allen

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar

Asaf Salamov

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Frederic Verret

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

Grzegorz Sabat

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Heather L. Burch

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Berges

University of Wisconsin–Milwaukee

View shared research outputs
Researchain Logo
Decentralizing Knowledge