Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Miyuki Takahashi is active.

Publication


Featured researches published by Miyuki Takahashi.


Leukemia | 2011

Eμ/miR-125b transgenic mice develop lethal B-cell malignancies

Yutaka Enomoto; Jiro Kitaura; K Hatakeyama; J Watanuki; T Akasaka; Naoko Kato; Masaya Shimanuki; Koutarou Nishimura; Miyuki Takahashi; Masafumi Taniwaki; C Haferlach; Reiner Siebert; Mjs Dyer; Norio Asou; Hiroyuki Aburatani; Hideki Nakakuma; Toshio Kitamura; Takashi Sonoki

MicroRNA-125b-1 (miR-125b-1) is a target of a chromosomal translocation t(11;14)(q24;q32) recurrently found in human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation results in overexpression of miR-125b controlled by immunoglobulin heavy chain gene (IGH) regulatory elements. In addition, we found that six out of twenty-one BCP-ALL patients without t(11;14)(q24;q32) showed overexpression of miR-125b. Interestingly, four out of nine patients with BCR/ABL-positive BCP-ALL and one patient with B-cell lymphoid crisis that had progressed from chronic myelogenous leukemia overexpressed miR-125b. To examine the role of the deregulated expression of miR-125b in the development of B-cell tumor in vivo, we generated transgenic mice mimicking the t(11;14)(q24;q32) (Eμ/miR-125b-TG mice). Eμ/miR-125b-TG mice overexpressed miR-125b driven by IGH enhancer and promoter and developed IgM-negative or IgM-positive lethal B-cell malignancies with clonal proliferation. B cells obtained from the Eμ/miR-125b-TG mice were resistant to apoptosis induced by serum starvation. We identified Trp53inp1, a pro-apoptotic gene induced by cell stress, as a novel target gene of miR-125b in hematopoietic cells in vitro and in vivo. Our results provide direct evidence that miR-125b has important roles in the tumorigenesis of precursor B cells.


Leukemia & Lymphoma | 2010

Energy metabolism of leukemia cells: glycolysis versus oxidative phosphorylation.

Kazuto Suganuma; Hiroshi Miwa; Norikazu Imai; Masato Shikami; Mayuko Gotou; Mineaki Goto; Shohei Mizuno; Miyuki Takahashi; Hidesuke Yamamoto; Akihito Hiramatsu; Motohiro Wakabayashi; Masaya Watarai; Ichiro Hanamura; Akira Imamura; Hidetsugu Mihara; Masakazu Nitta

For generation of energy, cancer cells utilize glycolysis more vigorously than oxidative phosphorylation in mitochondria (Warburg effect). We examined the energy metabolism of four leukemia cell lines by using glycolysis inhibitor, 2-deoxy-d-glucose (2-DG) and inhibitor of oxidative phosphorylation, oligomycin. NB4 was relatively sensitive to 2-DG (IC50: 5.75 mM), consumed more glucose and produced more lactate (waste product of glycolysis) than the three other cell lines. Consequently, NB4 was considered as a “glycolytic” leukemia cell line. Dependency on glycolysis in NB4 was confirmed by the fact that glucose (+) FCS (−) medium showed more growth and survival than glucose (−) FCS (+) medium. Alternatively, THP-1, most resistant to 2-DG (IC50: 16.14 mM), was most sensitive to oligomycin. Thus, THP-1 was recognized to be dependent on oxidative phosphorylation. In THP-1, glucose (−) FCS (+) medium showed more growth and survival than glucose (+) FCS (−) medium. The dependency of THP-1 on FCS was explained, at least partly, by fatty acid oxidation because inhibitor of fatty acid β-oxidation, etomoxir, augmented the growth suppression of THP-1 by 2-DG. We also examined the mechanisms by which THP-1 was resistant to, and NB4 was sensitive to 2-DG treatment. In THP-1, AMP kinase (AMPK), which is activated when ATP becomes limiting, was rapidly phosphorylated by 2-DG, and expression of Bcl-2 was augmented, which might result in resistance to 2-DG. On the other hand, AMPK phosphorylation and augmentation of Bcl-2 expression by 2-DG were not observed in NB4, which is 2-DG sensitive. These results will facilitate the future leukemia therapy targeting metabolic pathways.


Molecular and Cellular Biochemistry | 2015

Lipopolysaccharide augments the uptake of oxidized LDL by up-regulating lectin-like oxidized LDL receptor-1 in macrophages

Ekhtear Hossain; Akinobu Ota; Sivasundaram Karnan; Miyuki Takahashi; Shahnewaj B. Mannan; Hiroyuki Konishi; Yoshitaka Hosokawa

There is a growing body of evidence supporting an intimate association of immune activation with the pathogenesis of cardiovascular diseases, including atherosclerosis. Uptake of oxidized low-density lipoprotein (oxLDL) through scavenging receptors promotes the formation of mature lipid-laden macrophages, which subsequently leads to exacerbation of regional inflammation and atherosclerotic plaque formation. In this study, we first examined changes in the mRNA level of the lectin-like oxLDL receptor-1 (LOX-1) in the mouse macrophage cell line RAW264.7 and the human PMA-induced macrophage cell line THP-1 after LPS stimulation. LPS significantly up-regulated LOX-1 mRNA in RAW264.7 cells; LOX-1 cell-surface protein expression was also increased. Flow cytometry and fluorescence microscopy analyses showed that cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with LPS stimulation. The augmented uptake of Dil-oxLDL was almost completely abrogated by treatment with an anti-LOX-1 antibody. Of note, knockdown of Erk1/2 resulted in a significant reduction of LPS-induced LOX-1 up-regulation. Treatment with U0126, a specific inhibitor of MEK, significantly suppressed LPS-induced expression of LOX-1 at both the mRNA and protein levels. Furthermore, LOX-1 promoter activity was significantly augmented by LPS stimulation; this augmentation was prevented by U0126 treatment. Similar results were also observed in human PMA-induced THP-1 macrophages. Taken together, our results indicate that LPS up-regulates LOX-1, at least in part through activation of the Erk1/2 signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of TLR4-mediated aberrant LOX-1 signaling in the pathogenesis of atherosclerosis.


Cancer Science | 2013

Arsenic trioxide prevents nitric oxide production in lipopolysaccharide -stimulated RAW 264.7 by inhibiting a TRIF-dependent pathway

Miyuki Takahashi; Akinobu Ota; Sivasundaram Karnan; Ekhtear Hossain; Yuko Konishi; Lkhagvasuren Damdindorj; Hiroyuki Konishi; Takashi Yokochi; Masakazu Nitta; Yoshitaka Hosokawa

Arsenic trioxide (ATO) is one of the most potent drugs in cancer chemotherapy, and is highly effective in treating both newly diagnosed and relapse patients with acute promyelocytic leukemia (APL). Despite a number of reports regarding the molecular mechanisms by which ATO promotes anti‐tumor or pro‐apoptotic activity in hematological and other solid malignancies, the effects of ATO on immune responses remain poorly understood. To further understand and clarify the effects of ATO on immune responses, we sought to examine whether ATO affects the production of nitric oxide (NO) in a lipopolysaccharide (LPS)‐stimulated mouse macrophage cell line, RAW 264.7. Arsenic trioxide was found to prevent NO production in a dose‐dependent manner. Arsenic trioxide significantly inhibited the increase in inducible nitric oxide synthase (iNOS) at both the mRNA and protein levels. Furthermore, our analyses revealed that the inhibitory effect of ATO on iNOS expression was ascribed to the prevention of IRF3 phosphorylation, interferon (IFN)‐β expression, and STAT1 phosphorylation, but not the prevention of the MyD88‐dependent pathway. Taken together, our results indicate that ATO prevents NO production by inhibiting the TIR‐domain‐containing adaptor protein inducing IFN‐β (TRIF)‐dependent pathway, thus highlighting an anti‐inflammatory property of ATO in innate immunity.


Toxicology Letters | 2013

Arsenic upregulates the expression of angiotensin II Type I receptor in mouse aortic endothelial cells

Ekhtear Hossain; Akinobu Ota; Miyuki Takahashi; Sivasundaram Karnan; Lkhagvasuren Damdindorj; Yuko Konishi; Hiroyuki Konishi; Yoshitaka Hosokawa

Although chronic arsenic exposure is a well-known risk for cardiovascular disease and has a strong correlation with hypertension, the molecular pathogenesis underlying arsenic exposure-induced hypertension remains poorly understood. To delineate the pathogenesis, we examined changes in the mRNA levels of 2 angiotensin II Type I receptor (AT1R) subtypes, AT1AR and AT1BR, in a mouse aortic endothelial cell line, END-D. Quantitative real-time PCR analysis revealed significant increases in the mRNA levels of 2 AT1R subtypes, AT1AR and AT1BR following sodium arsenite (SA) treatment. Flow cytometry analysis revealed that SA increases the generation of reactive oxygen species (ROS) in a dose-dependent manner. In addition, western blot analysis revealed that SA enhances the phosphorylations of c-Jun N-terminal kinases (JNK) and activated protein 1 (AP-1). These phosphorylations were inhibited by N-acetylcysteine (NAC), an anti-oxidant. Finally, SA-induced AT1R expression was found to be prevented both by NAC and specific JNK inhibitor, SP6001325, strongly indicating that AT1R upregulation is a result of the ROS-mediated activation of the JNK signaling pathway. Taken together, our results indicate that arsenic indeed upregulates the AT1R expression, thus highlighting a role of arsenic-induced aberrant AT1R signaling in the pathogenesis of hypertension.


Toxicology and Applied Pharmacology | 2013

Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells

Ekhtear Hossain; Akinobu Ota; Sivasundaram Karnan; Lkhagvasuren Damdindorj; Miyuki Takahashi; Yuko Konishi; Hiroyuki Konishi; Yoshitaka Hosokawa

Although chronic arsenic exposure is a well-known risk factor for cardiovascular diseases, including atherosclerosis, the molecular mechanism underlying arsenic-induced atherosclerosis remains obscure. Therefore, this study aimed to elucidate this molecular mechanism. We examined changes in the mRNA level of the lectin-like oxidized LDL (oxLDL) receptor (LOX-1) in a mouse aortic endothelial cell line, END-D, after sodium arsenite (SA) treatment. SA treatment significantly upregulated LOX-1 mRNA expression; this finding was also verified at the protein expression level. Flow cytometry and fluorescence microscopy analyses showed that the cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with SA treatment. In addition, an anti-LOX-1 antibody completely abrogated the augmented uptake of Dil-oxLDL. We observed that SA increased the levels of the phosphorylated forms of nuclear factor of kappa light polypeptide gene enhancer in B cells (NF-κB)/p65. SA-induced upregulation of LOX-1 protein expression was clearly prevented by treatment with an antioxidant, N-acetylcysteine (NAC), or an NF-κB inhibitor, caffeic acid phenethylester (CAPE). Furthermore, SA-augmented uptake of Dil-oxLDL was also prevented by treatment with NAC or CAPE. Taken together, our results indicate that arsenic upregulates LOX-1 expression through the reactive oxygen species-mediated NF-κB signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of the aberrant LOX-1 signaling pathway in the pathogenesis of arsenic-induced atherosclerosis.


Cancer Investigation | 2014

Importance of Glutamine Metabolism in Leukemia Cells by Energy Production Through TCA Cycle and by Redox Homeostasis

Mineaki Goto; Hiroshi Miwa; Masato Shikami; Norikazu Tsunekawa-Imai; Kazuto Suganuma; Shohei Mizuno; Miyuki Takahashi; Motonori Mizutani; Ichiro Hanamura; Masakazu Nitta

Some cancer cells depend on glutamine despite of pronounced glycolysis. We examined the glutamine metabolism in leukemia cells, and found that HL-60 cells most depended on glutamine in the 4 acute myelogenous leukemia (AML) cell lines examined: growth of HL-60 cells was most suppressed by glutamine deprivation and by inhibition of glutaminolysis, which was rescued by tricarboxylic acid (TCA) cycle intermediate, oxaloacetic acid. Glutamine is also involved in antioxidant defense function by increasing glutathione. Glutamine deprivation suppressed the glutathione content and elevated reactive oxygen species most evidently in HL-60 cells. Glutamine metabolism might be a therapeutic target in some leukemia.


Oncology Reports | 2013

Leukemia cells demonstrate a different metabolic perturbation provoked by 2-deoxyglucose.

Hiroshi Miwa; Masato Shikami; Mineaki Goto; Shohei Mizuno; Miyuki Takahashi; Norikazu Tsunekawa-Imai; Takamasa Ishikawa; Motonori Mizutani; Tomohiro Horio; Mayuko Gotou; Hidesuke Yamamoto; Motohiro Wakabayashi; Masaya Watarai; Ichiro Hanamura; Akira Imamura; Hidetsugu Mihara; Masakazu Nitta

The shift in energy metabolism from oxidative phosphorylation to glycolysis can serve as a target for the inhibition of cancer growth. Here, we examined the metabolic changes induced by 2-deoxyglucose (2-DG), a glycolysis inhibitor, in leukemia cells by metabolome analysis. NB4 cells mainly utilized glucose as an energy source by glycolysis and oxidative phosphorylation in mitochondria, since metabolites in the glycolytic pathway and in the tricarboxylic acid (TCA) cycle were significantly decreased by 2-DG. In THP-1 cells, metabolites in the TCA cycle were not decreased to the same extent by 2-DG as in NB4 cells, which indicates that THP-1 utilizes energy sources other than glucose. TCA cycle metabolites in THP-1 cells may be derived from acetyl-CoA by fatty acid β-oxidation, which was supported by abundant detection of carnitine and acetylcarnitine in THP-1 cells. 2-DG treatment increased the levels of pentose phosphate pathway (PPP) metabolites and augmented the generation of NADPH by glucose-6-phosphate dehydrogenase. An increase in NADPH and upregulation of glutathione synthetase expression resulted in the increase in the reduced form of glutathione by 2-DG in NB4 cells. We demonstrated that a combination of 2-DG and inhibition of PPP by dehydroepiandrosterone (DHEA) effectively suppressed the growth of NB4 cells. The replenishment of the TCA cycle by fatty acid oxidation by carnitine palmitoyltransferase in THP-1 cells, treated by 2-DG, might be regulated by AMPK, as the combination of 2-DG and inhibition of AMPK by compound C potently suppressed the growth of THP-1 cells. Although 2-DG has been effective in preclinical and clinical studies, this treatment has not been fully explored due to concerns related to potential toxicities such as brain toxicity at high doses. We demonstrated that a combination of 2-DG and DHEA or compound C at a relatively low concentration effectively inhibits the growth of NB4 and THP-1 cells, respectively. These observations may aid in the identification of appropriate combinations of metabolic inhibitors at low concentrations which do not cause toxicities.


PLOS ONE | 2014

The Thyroid Status of Children and Adolescents in Fukushima Prefecture Examined during 20–30 Months after the Fukushima Nuclear Power Plant Disaster: A Cross-Sectional, Observational Study

Hajime Watanobe; Tomoyuki Furutani; Masahiko Nihei; Yu Sakuma; Rie Yanai; Miyuki Takahashi; Hideo Sato; Fumihiko Sagawa

Background A possible increase in thyroid cancer in the young represents the most critical health problem to be considered after the nuclear accident in Fukushima, Japan (March 2011), which is an important lesson from the Chernobyl disaster (April 1986). Although it was reported that childhood thyroid cancer had started to increase 3–5 yr after the Chernobyl accident, we speculate that the actual period of latency might have been shorter than reported, considering the delay in initiating thyroid surveillance in the then Soviet Union and also the lower quality of ultrasonographic testing in the 1980s. Our primary objectives in the present study were to identify any possible thyroid abnormality in young Fukushima citizens at a relatively early timepoint (20–30 months) after the accident, and also to strive to find a possible relationship among thyroid ultrasonographic findings, thyroid-relevant biochemical markers, and iodine-131 ground deposition in the locations of residence where they stayed during very early days after the accident. Methods and Findings This is a cross-sectional study. We targeted the Fukushima residents who were 18 yr old or younger (including fetuses) at the time of the accident. Our examinations comprised a questionnaire, thyroid ultrasonography, thyroid-related blood tests, and urinary iodine measurement. We analyzed a possible relationship among thyroid ultrasonographic findings (1,137 subjects), serum hormonal data (731 subjects), urinary iodine concentrations (770 subjects), and iodine-131 ground deposition (1,137 subjects). We did not find any significant relationship among these indicators, and no participant was diagnosed to contract thyroid cancer. Conclusions At the timepoint of 20–30 months after the accident, we did not confirm any discernible deleterious effects of the emitted radioactivity on the thyroid of young Fukushima residents. This is the first report in English detailing the thyroid status of young Fukushima residents after the nuclear disaster.


Leukemia Research | 2013

Growth of xenotransplanted leukemia cells is influenced by diet nutrients and is attenuated with 2-deoxyglucose

Norikazu Tsunekawa-Imai; Hiroshi Miwa; Masato Shikami; Kazuto Suganuma; Mineaki Goto; Shohei Mizuno; Miyuki Takahashi; Motonori Mizutani; Tomohiro Horio; Hiroko Komatsubara; Mayuko Gotou; Hidesuke Yamamoto; Motohiro Wakabayashi; Masaya Watarai; Ichiro Hanamura; Akira Imamura; Hidetsugu Mihara; Masakazu Nitta

We examined the effects of diet nutrients on xenotransplanted leukemia cells, THP-1 or NB4. THP-1 tumors showed more growth when fed with high fat diet, while NB4 tumors grew more with high carbohydrate diet. Then, administration of 2-deoxyglucose (a glycolysis inhibitor) showed a significant antitumor effect on both tumors: NB4 tumor showed large necrotic areas, while THP-1 tumor did not, but had augmented expression of enzymes for fatty acid oxidation. 2-Deoxyglucose inhibited the growth of NB4 by cell death because main energy producing pathway (glycolysis) was abolished, while 2-deoxyglucose slowed the growth of THP-1 by shifting energy metabolism to fatty acid β-oxidation.

Collaboration


Dive into the Miyuki Takahashi's collaboration.

Top Co-Authors

Avatar

Masakazu Nitta

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Miwa

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Masato Shikami

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Shohei Mizuno

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akinobu Ota

Aichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaya Watarai

Aichi Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge