Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mizue Anda is active.

Publication


Featured researches published by Mizue Anda.


Plant and Cell Physiology | 2010

Community- and Genome-Based Views of Plant-Associated Bacteria: Plant–Bacterial Interactions in Soybean and Rice

Seishi Ikeda; Takashi Okubo; Mizue Anda; Hideo Nakashita; Michiko Yasuda; Shusei Sato; Takakazu Kaneko; Satoshi Tabata; Shima Eda; Ayumi Momiyama; Kimihiro Terasawa; Hisayuki Mitsui; Kiwamu Minamisawa

Diverse microorganisms are living as endophytes in plant tissues and as epiphytes on plant surfaces in nature. Questions about driving forces shaping the microbial community associated with plants remain unanswered. Because legumes developed systems to attain endosymbioses with rhizobia as well as mycorrhizae during their evolution, the above questions can be addressed using legume mutants relevant to genes for symbiosis. Analytical methods for the microbial community have recently been advanced by enrichment procedures of plant-associated microbes and culture-independent analyses targeting the small subunit of rRNA in microbial ecology. In this review, we first deal with interdisciplinary works on the global diversity of bacteria associated with field-grown soybeans with different nodulation genotypes and nitrogen application. A subpopulation of Proteobacteria in aerial parts of soybean shoots was likely to be regulated through both the autoregulation system for plant-rhizobium symbiosis and the nitrogen signaling pathway, suggesting that legumes accommodate a taxonomically characteristic microbial community through unknown plant-microbe communications. In addition to the community views, we then show multiphasic analysis of a beneficial rice endophyte for comparative bacterial genomics and plant responses. The significance and perspectives of community- and genome-based approaches are discussed to achieve a better understanding of plant-microbe interactions.


Microbes and Environments | 2012

Complete genome sequence of Bradyrhizobium sp. S23321: insights into symbiosis evolution in soil oligotrophs.

Takashi Okubo; Takahiro Tsukui; Hiroko Maita; Shinobu Okamoto; Kenshiro Oshima; Takatomo Fujisawa; Akihiro Saito; Hiroyuki Futamata; Reiko Hattori; Yumi Shimomura; Shin Haruta; Sho Morimoto; Yong Wang; Yoriko Sakai; Masahira Hattori; Shin-Ichi Aizawa; Kenji V. P. Nagashima; Sachiko Masuda; Tsutomu Hattori; Akifumi Yamashita; Zhihua Bao; Masahito Hayatsu; Hiromi Kajiya-Kanegae; Ikuo Yoshinaga; Kazunori Sakamoto; Koki Toyota; Mitsuteru Nakao; Mitsuyo Kohara; Mizue Anda; Rieko Niwa

Bradyrhizobium sp. S23321 is an oligotrophic bacterium isolated from paddy field soil. Although S23321 is phylogenetically close to Bradyrhizobium japonicum USDA110, a legume symbiont, it is unable to induce root nodules in siratro, a legume often used for testing Nod factor-dependent nodulation. The genome of S23321 is a single circular chromosome, 7,231,841 bp in length, with an average GC content of 64.3%. The genome contains 6,898 potential protein-encoding genes, one set of rRNA genes, and 45 tRNA genes. Comparison of the genome structure between S23321 and USDA110 showed strong colinearity; however, the symbiosis islands present in USDA110 were absent in S23321, whose genome lacked a chaperonin gene cluster (groELS3) for symbiosis regulation found in USDA110. A comparison of sequences around the tRNA-Val gene strongly suggested that S23321 contains an ancestral-type genome that precedes the acquisition of a symbiosis island by horizontal gene transfer. Although S23321 contains a nif (nitrogen fixation) gene cluster, the organization, homology, and phylogeny of the genes in this cluster were more similar to those of photosynthetic bradyrhizobia ORS278 and BTAi1 than to those on the symbiosis island of USDA110. In addition, we found genes encoding a complete photosynthetic system, many ABC transporters for amino acids and oligopeptides, two types (polar and lateral) of flagella, multiple respiratory chains, and a system for lignin monomer catabolism in the S23321 genome. These features suggest that S23321 is able to adapt to a wide range of environments, probably including low-nutrient conditions, with multiple survival strategies in soil and rhizosphere.


Applied and Environmental Microbiology | 2014

Metaproteomic Identification of Diazotrophic Methanotrophs and Their Localization in Root Tissues of Field-Grown Rice Plants

Zhihua Bao; Takashi Okubo; Kengo Kubota; Yasuhiro Kasahara; Hirohito Tsurumaru; Mizue Anda; Seishi Ikeda; Kiwamu Minamisawa

ABSTRACT In a previous study by our group, CH4 oxidation and N2 fixation were simultaneously activated in the roots of wild-type rice plants in a paddy field with no N input; both processes are likely controlled by a rice gene for microbial symbiosis. The present study examined which microorganisms in rice roots were responsible for CH4 oxidation and N2 fixation under the field conditions. Metaproteomic analysis of root-associated bacteria from field-grown rice (Oryza sativa Nipponbare) revealed that nitrogenase complex-containing nitrogenase reductase (NifH) and the alpha subunit (NifD) and beta subunit (NifK) of dinitrogenase were mainly derived from type II methanotrophic bacteria of the family Methylocystaceae, including Methylosinus spp. Minor nitrogenase proteins such as Methylocella, Bradyrhizobium, Rhodopseudomonas, and Anaeromyxobacter were also detected. Methane monooxygenase proteins (PmoCBA and MmoXYZCBG) were detected in the same bacterial group of the Methylocystaceae. Because these results indicated that Methylocystaceae members mediate both CH4 oxidation and N2 fixation, we examined their localization in rice tissues by using catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). The methanotrophs were localized around the epidermal cells and vascular cylinder in the root tissues of the field-grown rice plants. Our metaproteomics and CARD-FISH results suggest that CH4 oxidation and N2 fixation are performed mainly by type II methanotrophs of the Methylocystaceae, including Methylosinus spp., inhabiting the vascular bundles and epidermal cells of rice roots.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome

Mizue Anda; Yoshiyuki Ohtsubo; Takashi Okubo; Masayuki Sugawara; Yuji Nagata; Masataka Tsuda; Kiwamu Minamisawa; Hisayuki Mitsui

Significance In bacterial genomes, chromosomes are distinguished from plasmids by the localization of essential genes. It has been taken for granted that fundamental genes such as the rRNA (rrn) operon should be transmitted faithfully on the chromosome. Here, we found a striking exception: A plant-associated bacterium, Aureimonas sp. AU20, and its close relatives harbor the rrn operon only on a small, high-copy-number replicon but not on the chromosome. Our findings show the existence of novel genome organization in bacteria. rRNA is essential for life because of its functional importance in protein synthesis. The rRNA (rrn) operon encoding 16S, 23S, and 5S rRNAs is located on the “main” chromosome in all bacteria documented to date and is frequently used as a marker of chromosomes. Here, our genome analysis of a plant-associated alphaproteobacterium, Aureimonas sp. AU20, indicates that this strain has its sole rrn operon on a small (9.4 kb), high-copy-number replicon. We designated this unusual replicon carrying the rrn operon on the background of an rrn-lacking chromosome (RLC) as the rrn-plasmid. Four of 12 strains close to AU20 also had this RLC/rrn-plasmid organization. Phylogenetic analysis showed that those strains having the RLC/rrn-plasmid organization represented one clade within the genus Aureimonas. Our finding introduces a previously unaddressed viewpoint into studies of genetics, genomics, and evolution in microbiology and biology in general.


Microbes and Environments | 2013

Impact of Azospirillum sp. B510 Inoculation on Rice-Associated Bacterial Communities in a Paddy Field

Zhihua Bao; Kazuhiro Sasaki; Takashi Okubo; Seishi Ikeda; Mizue Anda; Eiko Hanzawa; Kaori Kakizaki; Tadashi Sato; Hisayuki Mitsui; Kiwamu Minamisawa

Rice seedlings were inoculated with Azospirillum sp. B510 and transplanted into a paddy field. Growth in terms of tiller numbers and shoot length was significantly increased by inoculation. Principal-coordinates analysis of rice bacterial communities using the 16S rRNA gene showed no overall change from B510 inoculation. However, the abundance of Veillonellaceae and Aurantimonas significantly increased in the base and shoots, respectively, of B510-inoculated plants. The abundance of Azospirillum did not differ between B510-inoculated and uninoculated plants (0.02–0.50%). These results indicate that the application of Azospirillum sp. B510 not only enhanced rice growth, but also affected minor rice-associated bacteria.


Applied and Environmental Microbiology | 2015

Symbiosis Island Shuffling with Abundant Insertion Sequences in the Genomes of Extra-Slow-Growing Strains of Soybean Bradyrhizobia

Takayuki Iida; Manabu Itakura; Mizue Anda; Masayuki Sugawara; Tsuyoshi Isawa; Takashi Okubo; Shusei Sato; Kaori Chiba-Kakizaki; Kiwamu Minamisawa

ABSTRACT Extra-slow-growing bradyrhizobia from root nodules of field-grown soybeans harbor abundant insertion sequences (ISs) and are termed highly reiterated sequence-possessing (HRS) strains. We analyzed the genome organization of HRS strains with the focus on IS distribution and symbiosis island structure. Using pulsed-field gel electrophoresis, we consistently detected several plasmids (0.07 to 0.4 Mb) in the HRS strains (NK5, NK6, USDA135, 2281, USDA123, and T2), whereas no plasmids were detected in the non-HRS strain USDA110. The chromosomes of the six HRS strains (9.7 to 10.7 Mb) were larger than that of USDA110 (9.1 Mb). Using MiSeq sequences of 6 HRS and 17 non-HRS strains mapped to the USDA110 genome, we found that the copy numbers of ISRj1, ISRj2, ISFK1, IS1632, ISB27, ISBj8, and IS1631 were markedly higher in HRS strains. Whole-genome sequencing showed that the HRS strain NK6 had four small plasmids (136 to 212 kb) and a large chromosome (9,780 kb). Strong colinearity was found between 7.4-Mb core regions of the NK6 and USDA110 chromosomes. USDA110 symbiosis islands corresponded mainly to five small regions (S1 to S5) within two variable regions, V1 (0.8 Mb) and V2 (1.6 Mb), of the NK6 chromosome. The USDA110 nif gene cluster (nifDKENXSBZHQW-fixBCX) was split into two regions, S2 and S3, where ISRj1-mediated rearrangement occurred between nifS and nifB. ISs were also scattered in NK6 core regions, and ISRj1 insertion often disrupted some genes important for survival and environmental responses. These results suggest that HRS strains of soybean bradyrhizobia were subjected to IS-mediated symbiosis island shuffling and core genome degradation.


Microbes and Environments | 2016

Sulfur Fertilization Changes the Community Structure of Rice Root-, and Soil-Associated Bacteria

Sachiko Masuda; Zhihua Bao; Takashi Okubo; Kazuhiro Sasaki; Seishi Ikeda; Ryo Shinoda; Mizue Anda; Ryuji Kondo; Yumi Mori; Kiwamu Minamisawa

Under paddy field conditions, biological sulfur oxidation occurs in the oxidized surface soil layer and rhizosphere, in which oxygen leaks from the aerenchyma system of rice plants. In the present study, we examined community shifts in sulfur-oxidizing bacteria associated with the oxidized surface soil layer and rice roots under different sulfur fertilization conditions based on the 16S ribosomal RNA (rRNA) gene in order to explore the existence of oligotrophic sulfur-oxidizing bacteria in the paddy rice ecosystem. Rice plants were grown in pots with no fertilization (control) or CaCO3 or CaSO4 fertilization. A principal-coordinates analysis (PCoA) showed that CaSO4 fertilization markedly affected bacterial communities associated with rice roots and soil, whereas no significant differences were observed in plant growth among the fertilizer treatments examined. In rice roots, the relative abundance of Acidobacteria, Alphaproteobacteria, Gammaproteobacteria, and TM7 was significantly higher in CaSO4-fertilized pots than in control pots. Alphaproteobacteria, Bradyrhizobiaceae, and Methylocystaceae members were significantly more abundant in CaSO4-fertilized roots than in control roots. On the other hand, the abundance of Actinobacteria and Proteobacteria was lower in CaSO4-fertilized soil than in control soil. These results indicate that the bacteria associated with rice roots and soil responded to the sulfur amendment, suggesting that more diverse bacteria are involved in sulfur oxidation in the rice paddy ecosystem than previously considered.


Genome Announcements | 2016

Complete Genome Sequence of Methylobacterium sp. Strain AMS5, an Isolate from a Soybean Stem

Tomoyuki Minami; Yoshiyuki Ohtsubo; Mizue Anda; Yuji Nagata; Masataka Tsuda; Hisayuki Mitsui; Masayuki Sugawara; Kiwamu Minamisawa

ABSTRACT Nonrhizobial Methylobacterium spp. inhabit the phyllosphere of a wide variety of plants. We report here the complete genome sequence of Methylobacterium sp. AMS5, which was isolated from a soybean stem. The information is useful for understanding the molecular mechanisms of the interaction between nonrhizobial Methylobacterium spp. and plants.


Microbes and Environments | 2011

Isolation and Genetic Characterization of Aurantimonas and Methylobacterium Strains from Stems of Hypernodulated Soybeans

Mizue Anda; Seishi Ikeda; Shima Eda; Takashi Okubo; Shusei Sato; Satoshi Tabata; Hisayuki Mitsui; Kiwamu Minamisawa


日本微生物生態学会講演要旨集 | 2012

S01-3 Metagenome and microscopic analyses for plant-associated microbes towards sustainable agriculture(Session 1 Microbes and sustainable agriculture,Symposium session)

Takashi Okubo; Shohei Fukushima; Mizue Anda; Seishi Ikeda; Kiwamu Minamisawa

Collaboration


Dive into the Mizue Anda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge