Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mo Xian is active.

Publication


Featured researches published by Mo Xian.


Bioresource Technology | 2009

Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment.

Qiang Li; Yucai He; Mo Xian; Gao Jun; Xin Xu; Jianming Yang; Liang-Zhi Li

This study aims to establish a cellulose pretreatment process using ionic liquids (ILs) for efficient enzymatic hydrolysis. The IL 1-ethyl-3-methyl imidazolium diethyl phosphate ([EMIM]DEP) was selected in view of its low viscous and the potential of accelerating enzymatic hydrolysis, and it could be recyclable. The yield of reducing sugars from wheat straw pretreated with this IL at 130 degrees C for 30 min reached 54.8% after being enzymatically hydrolyzed for 12h. Wheat straw regenerated were hydrolyzed more easily than that treated with water. The fermentability of the hydrolyzates, obtained after enzymatic saccharification of the regenerated wheat straw, was evaluated using Saccharomyces cerevisiae. This microbe could ferment glucose efficiently, and the ethanol production was 0.43 g/g glucose within 26 h. In conclusion, the IL [EMIM]DEP shows promise as pretreatment solvent for wheat straw, although its cost should be reduced and in-depth exploration of this subject is needed.


Journal of Industrial Microbiology & Biotechnology | 2009

Problems with the microbial production of butanol

Yanning Zheng; Liang-Zhi Li; Mo Xian; Yu-Jiu Ma; Jianming Yang; Xin Xu; Dong-Zhi He

With the incessant fluctuations in oil prices and increasing stress from environmental pollution, renewed attention is being paid to the microbial production of biofuels from renewable sources. As a gasoline substitute, butanol has advantages over traditional fuel ethanol in terms of energy density and hygroscopicity. A variety of cheap substrates have been successfully applied in the production of biobutanol, highlighting the commercial potential of biobutanol development. In this review, in order to better understand the process of acetone–butanol–ethanol production, traditional clostridia fermentation is discussed. Sporulation is probably induced by solvent formation, and the molecular mechanism leading to the initiation of sporulation and solventogenesis is also investigated. Different strategies are employed in the metabolic engineering of clostridia that aim to enhancing solvent production, improve selectivity for butanol production, and increase the tolerance of clostridia to solvents. However, it will be hard to make breakthroughs in the metabolic engineering of clostridia for butanol production without gaining a deeper understanding of the genetic background of clostridia and developing more efficient genetic tools for clostridia. Therefore, increasing attention has been paid to the metabolic engineering of E. coli for butanol production. The importation and expression of a non-clostridial butanol-producing pathway in E. coli is probably the most promising strategy for butanol biosynthesis. Due to the lower butanol titers in the fermentation broth, simultaneous fermentation and product removal techniques have been developed to reduce the cost of butanol recovery. Gas stripping is the best technique for butanol recovery found so far.


Bioresource Technology | 2009

A Brønsted acidic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from free fatty acids and alcohols

Lei Zhang; Mo Xian; Yucai He; Liang-Zhi Li; Jianming Yang; Shitao Yu; Xin Xu

Biodiesel could be synthesized using Brønsted acidic ionic liquid N-methyl-2-pyrrolidonium methyl sulfonate ([NMP][CH(3)SO(3)]) as a catalyst, specially with free long-chain fatty acids or their mixtures, as well as with low-molecular weight alcohols as substrates. This catalyst showed good catalytic and reusable performance under mild conditions and without any additional organic solvent. The ionic liquid could be reused eight times after the water in the ionic liquid was removed. The yields of fatty acid alkyl esters could reach between 93.6% and 95.3% after the esterifications were carried out at 70 degrees C for 8h. Therefore, an efficient and environmentally friendly catalyst was provided for the synthesis of biodiesel from low-cost feedstocks such as waste oils.


Applied Microbiology and Biotechnology | 2009

Biosynthetic pathways for 3-hydroxypropionic acid production

Xinglin Jiang; Xin Meng; Mo Xian

Biobased platform chemicals have attracted growing interest recently. Among them, 3-hydroxypropionic acid receives significant attention due to its applications in the synthesis of novel polymer materials and other derivatives. To establish a biotechnology route instead of the problematic chemical synthesis of 3-hydroxypropionic acid, biosynthetic pathway is required, and the strategies of how to engineer a microbe to produce this product should be considered. In the present review, we summarize and review all known pathways, which could be potentially constructed for 3-hydroxypropionic acid production. Mass and redox balances are discussed in detail. Thermodynamic favorability is evaluated by standard Gibbs free energy. The assembly of pathways and possible solutions are proposed. Several new techniques and future research needs are also covered.


Applied Microbiology and Biotechnology | 2011

Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

Chao Yu; Yujin Cao; Huibin Zou; Mo Xian

Confronted with the gradual and inescapable exhaustion of the earth’s fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now.


PLOS ONE | 2012

Enhancing Production of Bio-Isoprene Using Hybrid MVA Pathway and Isoprene Synthase in E. coli

Jianming Yang; Mo Xian; Sizheng Su; Guang Zhao; Qingjuan Nie; Xinglin Jiang; Yanning Zheng; Wei Liu

The depleting petroleum reserve, increasingly severe energy crisis, and global climate change are reigniting enthusiasm for seeking sustainable technologies to replace petroleum as a source of fuel and chemicals. In this paper, the efficiency of the MVA pathway on isoprene production has been improved as follows: firstly, in order to increase MVA production, the source of the “upper pathway” which contains HMG-CoA synthase, acetyl-CoA acetyltransferase and HMG-CoA reductase to covert acetyl-CoA into MVA has been changed from Saccharomyces cerevisiae to Enterococcus faecalis; secondly, to further enhance the production of MVA and isoprene, a alanine 110 of the mvaS gene has been mutated to a glycine. The final genetic strain YJM25 containing the optimized MVA pathway and isoprene synthase from Populus alba can accumulate isoprene up to 6.3 g/L after 40 h of fed-batch cultivation.


Microbial Cell Factories | 2012

Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli

Yanning Zheng; Lingling Li; Qiang Liu; Jianming Yang; Xiang-Wei Wang; Wei Liu; Xin Xu; Hui Liu; Guang Zhao; Mo Xian

BackgroundWith the increasing stress from oil price and environmental pollution, aroused attention has been paid to the microbial production of chemicals from renewable sources. The C12/14 and C16/18 alcohols are important feedstocks for the production of surfactants and detergents, which are widely used in the most respected consumer detergents, cleaning products and personal care products worldwide. Though bioproduction of fatty alcohols has been carried out in engineered E. coli, several key problems have not been solved in earlier studies, such as the quite low production of C16/18 alcohol, the lack of optimization of the fatty alcohol biosynthesis pathway, and the uncharacterized performance of the engineered strains in scaled-up system.ResultsWe improved the fatty alcohol production by systematically optimizing the fatty alcohol biosynthesis pathway, mainly targeting three key steps from fatty acyl-acyl carrier proteins (ACPs) to fatty alcohols, which are sequentially catalyzed by thioesterase, acyl-coenzyme A (CoA) synthase and fatty acyl-CoA reductase. By coexpression of thioesterase gene BTE, acyl-CoA synthase gene fadD and fatty acyl-CoA reductase gene acr1, 210.1 mg/L C12/14 alcohol was obtained. A further optimization of expression level of BTE, fadD and acr1 increased the C12/14 alcohol production to 449.2 mg/L, accounting for 75.0% of the total fatty alcohol production (598.6 mg/L). In addition, by coexpression of thioesterase gene ‘tesA, acyl-CoA synthase gene fadD and fatty acyl-CoA reductase gene FAR, 101.5 mg/L C16/18 alcohol was obtained, with C16/18 alcohol accounting for 89.2% of the total fatty alcohol production.ConclusionsTo our knowledge, this is the first report on selective production of C12/14 and C16/18 alcohols by microbial fermentation. This work achieved high-specificity production of both C12/14 and C16/18 alcohols. The encouraging 598.6 mg/L of fatty alcohols represents the highest titer reported so far. In addition, the 101.5 mg/L 89.2% C16/18 alcohol suggests an important breakthrough in C16/18 alcohol production. A more detailed optimization of the expression level of fatty alcohol biosynthesis pathway may contribute to a further improvement of fatty alcohol production.


Biotechnology for Biofuels | 2013

Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene.

Jianming Yang; Qingjuan Nie; Meng Ren; Hongru Feng; Xinglin Jiang; Yanning Zheng; Min Liu; Haibo Zhang; Mo Xian

Backgroundα-Pinene is an important natural product that is widely used in flavorings, fragrances, medicines, fine chemicals and high-density renewable fuels. Currently, α-Pinene used in industry is mainly produced either by tapping trees (gum turpentine) or as a byproduct of paper pulping (crude sulfate turpentine, CST). However, the extraction of it from trees is tedious and inefficient and requires substantial expenditure of natural resources. Therefore, it is necessary to seek sustainable technologies for α-pinene production.ResultsTo construct the microbial synthetic pathway of α-pinene in E. coli, we co-expressed native geranyl diphosphate synthase (IspA) from E. coli and α-pinene synthase (Pt30) from Pinus taeda, and then to increase the geranyl diphosphate (GPP) content in the cells, a suitable geranyl diphosphate synthase (GPPS2) was selected from two different origins. Furthermore, to enhance α-pinene production, a novel biosynthetic pathway of α-pinene was assembled in E. coli BL21(DE3) with the heterologous hybrid mevalonate (MVA) pathway, GPPS2 and α-pinene synthase (Pt30). The final genetic strain, YJM28, harboring the above novel biosynthetic pathway of α-pinene, accumulated α-pinene up to 5.44 mg/L and 0.97 g/L under flask and fed-batch fermentation conditions, respectively. The conversion efficiency of glucose to α-pinene (gram to gram) in the metabolically engineered strain reached 2.61%.ConclusionsIn this paper, by using metabolic engineering techniques, the more efficient biosynthetic pathway of α-pinene was successfully assembled in E. coli BL21(DE3) with the heterologous hybrid MVA pathway, GPPS2 and α-pinene synthase (Pt30). In addition, this is the first report on α-pinene fed-batch fermentation, and our results represent improvements over previous reports.


Microbial Cell Factories | 2012

Production of extracellular fatty acid using engineered Escherichia coli

Hui Liu; Chao Yu; Dexin Feng; Tao Cheng; Xin Meng; Wei Liu; Huibin Zou; Mo Xian

BackgroundAs an alternative for economic biodiesel production, the microbial production of extracellular fatty acid from renewable resources is receiving more concerns recently, since the separation of fatty acid from microorganism cells is normally involved in a series of energy-intensive steps. Many attempts have been made to construct fatty acid producing strains by targeting genes in the fatty acid biosynthetic pathway, while few studies focused on the cultivation process and the mass transfer kinetics.ResultsIn this study, both strain improvements and cultivation process strategies were applied to increase extracellular fatty acid production by engineered Escherichia coli. Our results showed overexpressing ‘TesA and the deletion of fadL in E. coli BL21 (DE3) improved extracellular fatty acid production, while deletion of fadD didn’t strengthen the extracellular fatty acid production for an undetermined mechanism. Moreover, the cultivation process controls contributed greatly to extracellular fatty acid production with respect to titer, cell growth and productivity by adjusting the temperature, adding ampicillin and employing on-line extraction. Under optimal conditions, the E. coli strain (pACY-‘tesA-ΔfadL) produced 4.8 g L−1 extracellular fatty acid, with the specific productivity of 0.02 g h−1 g−1dry cell mass, and the yield of 4.4% on glucose, while the ratios of cell-associated fatty acid versus extracellular fatty acid were kept below 0.5 after 15 h of cultivation. The fatty acids included C12:1, C12:0, C14:1, C14:0, C16:1, C16:0, C18:1, C18:0. The composition was dominated by C14 and C16 saturated and unsaturated fatty acids. Using the strain pACY-‘tesA, similar results appeared under the same culture conditions and the titer was also much higher than that ever reported previously, which suggested that the supposedly superior strain did not necessarily perform best for the efficient production of desired product. The strain pACY-‘tesA could also be chosen as the original strain for the next genetic manipulations.ConclusionsThe general strategy of metabolic engineering for the extracellular fatty acid production should be the cyclic optimization between cultivation performance and strain improvements. On the basis of our cultivation process optimization, strain improvements should be further carried out for the effective and cost-effective production process.


Bioresource Technology | 2012

Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli

Jianming Yang; Guang Zhao; Yuanzhang Sun; Yanning Zheng; Xinglin Jiang; Wei Liu; Mo Xian

In this paper, an original strategy is employed to biosynthesize the isoprene by heterologously co-expressing the Saccharomyces cerevisiae MVA pathway and isoprene synthase (IspS) from Populus alba in the Escherichia coli BL21 (DE3) strain, which was screened from three different IspS enzymes. The finally genetic strain YJM13 harboring the MVA pathway and ispS(Pa) gene could accumulate isoprene up to 2.48 mg/l and 532 mg/l under the flask and fed-batch fermentation conditions, respectively, which is about three times and five times to the control strain. The result proves to be higher than that in the report documents. In this way, a potential production system for isoprene from renewable sources via the MVA pathway in E. coli has been provided.

Collaboration


Dive into the Mo Xian's collaboration.

Top Co-Authors

Avatar

Guang Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huizhou Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianming Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xin Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yujin Cao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Haibo Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huibin Zou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xinglin Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tao Cheng

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge