Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Moe H. Aung is active.

Publication


Featured researches published by Moe H. Aung.


Investigative Ophthalmology & Visual Science | 2013

Early Visual Deficits in Streptozotocin-Induced Diabetic Long Evans Rats

Moe H. Aung; Moon K. Kim; Darin E. Olson; Peter M. Thulé; Machelle T. Pardue

PURPOSE Although diabetic retinopathy (DR) is clinically diagnosed based on vascular pathology, diabetic patients with angiographically normal retinas have been found to exhibit subtle defects in vision. This has led to the theory that diabetes-associated metabolic abnormalities directly impair neural retinal function before the development of vasculopathy, thereby resulting in visual deficits. In this study, we sought to delineate the temporal relationship between retinal dysfunction and visual deficits in a rat model of Type 1 diabetes. Moreover, we investigated the relative contribution of retinal dysfunction versus diabetes-induced lens opacity, to the visual deficits found in early-stage DR. METHODS Pigmented Long Evans rats were rendered diabetic with streptozotocin (STZ). Control and diabetic rats were assessed across 12 weeks of hyperglycemia for visual function with optokinetic tracking weekly visual acuity and monthly contrast sensitivity, retinal function with dark-adapted electroretinograms (monthly electroretinograms [ERGs]), and cataract formation with slit lamp exam (biweekly). RESULTS Diabetic rats exhibited significantly reduced visual function and delayed ERG responses by 1 month post-STZ. Significant cataracts did not develop until 6 weeks post-STZ. Moreover, increases in lens opacity (r = -0.728) and ERG implicit times (r = -0.615 for rod-dominated response and r = -0.322 for rod/cone mixed response) showed significant correlations with reductions in visual acuity in diabetic rats. CONCLUSIONS STZ-induced hyperglycemia reduces visual function, affecting both visual acuity and contrast sensitivity. The data suggest that visual defects found in early-stage DR may initially involve abnormalities of the neural retina and worsen with later development of cataracts.


Investigative Ophthalmology & Visual Science | 2015

In Vivo Imaging of Retinal Oxidative Stress Using a Reactive Oxygen Species-Activated Fluorescent Probe.

Megan Prunty; Moe H. Aung; Adam M. Hanif; Rachael S Allen; Micah A. Chrenek; Jeffrey H. Boatright; Peter M. Thulé; Kousik Kundu; Niren Murthy; Machelle T. Pardue

PURPOSE In vivo methods for detecting oxidative stress in the eye would improve screening and monitoring of the leading causes of blindness: diabetic retinopathy, glaucoma, and age-related macular degeneration. METHODS To develop an in vivo biomarker for oxidative stress in the eye, we tested the efficacy of a reactive oxygen species (ROS)-activated, near-infrared hydrocyanine-800CW (H-800CW) fluorescent probe in light-induced retinal degeneration (LIRD) mouse models. After intravitreal delivery in LIRD rats, fluorescent microscopy was used to confirm that the oxidized H-800CW appeared in the same retinal layers as an established ROS marker (dichlorofluorescein). RESULTS Dose-response curves of increasing concentrations of intravenously injected H-800CW demonstrated linear increases in both intensity and total area of fundus hyperfluorescence in LIRD mice, as detected by scanning laser ophthalmoscopy. Fundus hyperfluorescence also correlated with the duration of light damage and functional deficits in vision after LIRD. In LIRD rats with intravitreal injections of H-800CW, fluorescent labeling was localized to photoreceptor inner segments, similar to dichlorofluorescein. CONCLUSIONS Hydrocyanine-800CW detects retinal ROS in vivo and shows potential as a novel biomarker for ROS levels in ophthalmic diseases.


Investigative Ophthalmology & Visual Science | 2015

Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health

Janise D. Deming; Joseph S. Pak; Bruce M. Brown; Moon K. Kim; Moe H. Aung; Yun Sung Eom; Jung-a Shin; Eun-Jin Lee; Machelle T. Pardue; Cheryl M. Craft

PURPOSE Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. METHODS A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4-/-) compared with age-matched control, wild-type mice. RESULTS When 2-month-old Arr4-/- mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4-/- mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4-/- mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. CONCLUSIONS Our study demonstrates that Arr4-/- mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy.


Advances in Experimental Medicine and Biology | 2016

Tauroursodeoxycholic Acid Protects Retinal Function and Structure in rd1 Mice

Lawson Ec; Shagun K. Bhatia; Moon Han; Moe H. Aung; Ciavatta; Jeffrey H. Boatright; Machelle T. Pardue

We explored the potential protective effects of tauroursodeoxycholic acid (TUDCA) on cone photoreceptor survival in a model of rapid retinal degeneration, the ß-Pde6 (rd1) (rd1) mouse model. We injected two strains of rd1 mice (B6.C3-Pde6b (rd1) Hps4(le)/J and C57BL/6J-Pde6b (rd1-2)/J mice) daily from postnatal day (P) 6 to P21 with TUDCA or vehicle. At P21, retinal function was evaluated with light-adapted electroretinography (ERG) and retinal structure was observed with plastic or frozen sections. TUDCA treatment partially preserved function and structure in B6.C3-Pde6b (rd1) Hps4(le)/J mice but only partially preserved structure in C57BL/6J-Pde6b (rd1-2)/J mice. Our results suggest a possible intervention for patients undergoing rapid retinal degeneration.


Investigative Ophthalmology & Visual Science | 2015

Arrestin 1 and Cone Arrestin 4 Have Unique Roles in Visual Function in an All-Cone Mouse Retina.

Janise D. Deming; Joseph S. Pak; Jung-a Shin; Bruce M. Brown; Moon K. Kim; Moe H. Aung; Eun-Jin Lee; Machelle T. Pardue; Cheryl M. Craft

PURPOSE Previous studies discovered cone phototransduction shutoff occurs normally for Arr1-/- and Arr4-/-; however, it is defective when both visual arrestins are simultaneously not expressed (Arr1-/-Arr4-/-). We investigated the roles of visual arrestins in an all-cone retina (Nrl-/-) since each arrestin has differential effects on visual function, including ARR1 for normal light adaptation, and ARR4 for normal contrast sensitivity and visual acuity. METHODS We examined Nrl-/-, Nrl-/-Arr1-/-, Nrl-/-Arr4-/-, and Nrl-/-Arr1-/-Arr4-/- mice with photopic electroretinography (ERG) to assess light adaptation and retinal responses, immunoblot and immunohistochemical localization analysis to measure retinal expression levels of M- and S-opsin, and optokinetic tracking (OKT) to measure the visual acuity and contrast sensitivity. RESULTS Study results indicated that Nrl-/- and Nrl-/-Arr4-/- mice light adapted normally, while Nrl-/-Arr1-/- and Nrl-/-Arr1-/-Arr4-/- mice did not. Photopic ERG a-wave, b-wave, and flicker amplitudes followed a general pattern in which Nrl-/-Arr4-/- amplitudes were higher than the amplitudes of Nrl-/-, while the amplitudes of Nrl-/-Arr1-/- and Nrl-/-Arr1-/-Arr4-/- were lower. All three visual arrestin knockouts had faster implicit times than Nrl-/- mice. M-opsin expression is lower when ARR1 is not expressed, while S-opsin expression is lower when ARR4 is not expressed. Although M-opsin expression is mislocalized throughout the photoreceptor cells, S-opsin is confined to the outer segments in all genotypes. Contrast sensitivity is decreased when ARR4 is not expressed, while visual acuity was normal except in Nrl-/-Arr1-/-Arr4-/-. CONCLUSIONS Based on the opposite visual phenotypes in an all-cone retina in the Nrl-/-Arr1-/- and Nrl-/-Arr4-/- mice, we conclude that ARR1 and ARR4 perform unique modulatory roles in cone photoreceptors.


PLOS ONE | 2018

Daily visual stimulation in the critical period enhances multiple aspects of vision through BDNF-mediated pathways in the mouse retina

Amanda M. Mui; Victoria Yang; Moe H. Aung; Jieming Fu; Adewumi N. Adekunle; Brian C. Prall; Curran Sidhu; Han na Park; Jeffrey H. Boatright; P. Michael Iuvone; Machelle T. Pardue

Visual experience during the critical period modulates visual development such that deprivation causes visual impairments while stimulation induces enhancements. This study aimed to determine whether visual stimulation in the form of daily optomotor response (OMR) testing during the mouse critical period (1) improves aspects of visual function, (2) involves retinal mechanisms and (3) is mediated by brain derived neurotrophic factor (BDNF) and dopamine (DA) signaling pathways. We tested spatial frequency thresholds in C57BL/6J mice daily from postnatal days 16 to 23 (P16 to P23) using OMR testing. Daily OMR-treated mice were compared to littermate controls that were placed in the OMR chamber without moving gratings. Contrast sensitivity thresholds, electroretinograms (ERGs), visual evoked potentials, and pattern ERGs were acquired at P21. To determine the role of BDNF signaling, a TrkB receptor antagonist (ANA-12) was systemically injected 2 hours prior to OMR testing in another cohort of mice. BDNF immunohistochemistry was performed on retina and brain sections. Retinal DA levels were measured using high-performance liquid chromatography. Daily OMR testing enhanced spatial frequency thresholds and contrast sensitivity compared to controls. OMR-treated mice also had improved rod-driven ERG oscillatory potential response times, greater BDNF immunoreactivity in the retinal ganglion cell layer, and increased retinal DA content compared to controls. VEPs and pattern ERGs were unchanged. Systemic delivery of ANA-12 attenuated OMR-induced visual enhancements. Daily OMR testing during the critical period leads to general visual function improvements accompanied by increased DA and BDNF in the retina, with this process being requisitely mediated by TrkB activation. These results suggest that novel combination therapies involving visual stimulation and using both behavioral and molecular approaches may benefit degenerative retinal diseases or amblyopia.


European Journal of Neuroscience | 2018

TrkB signalling pathway mediates the protective effects of exercise in the diabetic rat retina

Rachael S Allen; Adam M. Hanif; Marissa Ann Gogniat; Brian C. Prall; Raza Haider; Moe H. Aung; Megan Prunty; Lukas Mees; Monica M Coulter; Cara Tessia Motz; Jeffrey H. Boatright; Machelle T. Pardue

Diabetic retinopathy is a leading cause of vision loss. Treatment options for early retinopathy are sparse. Exercise protects dying photoreceptors in models of retinal degeneration, thereby preserving vision. We tested the protective effects of exercise on retinal and cognitive deficits in a type 1 diabetes model and determined whether the TrkB pathway mediates this effect. Hyperglycaemia was induced in Long Evans rats via streptozotocin injection (STZ; 100 mg/kg). Following confirmed hyperglycaemia, both control and diabetic rats underwent treadmill exercise for 30 min, 5 days/week at 0 m/min (inactive groups) or 15 m/min (active groups) for 8 weeks. A TrkB receptor antagonist (ANA‐12), or vehicle, was injected 2.5 h before exercise training. We measured spatial frequency and contrast sensitivity using optokinetic tracking biweekly post‐STZ; retinal function using electroretinography at 4 and 8 weeks; and cognitive function and exploratory behaviour using Y‐maze at 8 weeks. Retinal neurotrophin‐4 was measured using ELISA. Compared with non‐diabetic controls, diabetic rats showed significantly reduced spatial frequency and contrast sensitivity, delayed electroretinogram oscillatory potential and flicker implicit times and reduced cognitive function and exploratory behaviour. Exercise interventions significantly delayed the appearance of all deficits, except for exploratory behaviour. Treatment with ANA‐12 significantly reduced this protection, suggesting a TrkB‐mediated mechanism. Despite this, no changes in retinal neurotrohin‐4 were observed with diabetes or exercise. Exercise protected against early visual and cognitive dysfunction in diabetic rats, suggesting that exercise interventions started after hyperglycaemia diagnosis may be a beneficial treatment. The translational potential is high, given that exercise treatment is non‐invasive, patient controlled and inexpensive.


Investigative Ophthalmology & Visual Science | 2018

Dopamine deficiency mediates early rod-driven inner retinal dysfunction in diabetic mice

Moon K. Kim; Moe H. Aung; Lukas Mees; Darin E. Olson; Nikita Pozdeyev; P. Michael Iuvone; Peter M. Thulé; Machelle T. Pardue

Purpose Electroretinograms (ERGs) are abnormal in diabetic retinas before the appearance of vascular lesions, providing a possible biomarker for diabetic vision loss. Previously, we reported that decreased retinal dopamine (DA) levels in diabetic rodents contributed to early visual and retinal dysfunction. In the current study, we examined whether oscillatory potentials (OPs) could serve as a potential marker for detecting early inner retinal dysfunction due to retinal DA deficiency. Methods Retinal function was tested with dark-adapted ERGs, taken at 3, 4, and 5 weeks after diabetes induction with streptozotocin. Electrical responses were analyzed and correlations were made with previously reported retinal DA levels. The effect of restoring systemic DA levels or removing DA from the retina in diabetic mice on OPs was assessed using L-3,4-dihydroxyphenylalanine (L-DOPA) treatments and retina-specific tyrosine hydroxylase (Th) knockout mice (rTHKO), respectively. Results Diabetic animals had significantly delayed OPs compared to control animals in response to dim, but not bright, flash stimuli. L-DOPA treatment preserved OP implicit time in diabetic mice. Diabetic rTHKO mice had further delayed OPs compared to diabetic mice with normal retinal Th, with L-DOPA treatment also providing benefit. Decreasing retinal DA levels significantly correlated with increasing OP delays mediated by rod pathways. Conclusions Our data suggest that inner retinal dysfunction in early-stage diabetes is mediated by rod-pathway deficits and DA deficiencies. OP delays may be used to determine the earliest functional deficits in diabetic retinopathy and to establish an early treatment window for DA therapies that may prevent progressive vision loss.


Translational Vision Science & Technology | 2014

Rodent Hyperglycemia-Induced Inner Retinal Deficits are Mirrored in Human Diabetes.

Machelle T. Pardue; Claire S. Barnes; Moon K. Kim; Moe H. Aung; Raj Amarnath; Darin E. Olson; Peter M. Thulé


Molecular Vision | 2014

Comparison of refractive development and retinal dopamine in OFF pathway mutant and C57BL/6J wild-type mice.

Ranjay Chakraborty; Han na Park; Moe H. Aung; Christopher C. Tan; Curran Sidhu; P. Michael Iuvone; Machelle T. Pardue

Collaboration


Dive into the Moe H. Aung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam M. Hanif

United States Department of Veterans Affairs

View shared research outputs
Researchain Logo
Decentralizing Knowledge