Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mogens Duch is active.

Publication


Featured researches published by Mogens Duch.


Biomaterials | 2009

The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and mineralization

Jette Lovmand; Jeannette Justesen; Morten Foss; Rune Hoff Lauridsen; Michael Lovmand; Charlotte Modin; Flemming Besenbacher; Finn Skou Pedersen; Mogens Duch

Nano- and microstructured surfaces are known to impact on the binding and differentiation of cells, but the detailed basic understanding of the underlying regulatory mechanisms is still scarce, which impedes the rational design of smart biomaterials. Towards a comprehensive analysis of the interplay between topographical parameters such as feature design and lateral and vertical dimensions we here report on a combinatorial screening approach, BioSurface Structure Array (BSSA) of test squares each with a distinct topography. Using such BSSA libraries of 504 topographically distinct surface structures, we have identified combinations of size, gap and height of structures which enhance mineralization as well as the expression of osteogenic markers of a preosteoblastic murine cell line. This generic BSSA screening platform is a versatile technology for the systematic identification of surfaces with specific biological properties, and it may for example be useful for optimizing the design of biomaterials for regulating cellular behaviour.


Nature Communications | 2016

Influenza A virus targets a cGAS-independent STING pathway that controls enveloped RNA viruses

Christian K. Holm; Stine H. Rahbek; Hans Henrik Gad; Rasmus O. Bak; Martin R. Jakobsen; Zhaozaho Jiang; Anne Louise Hansen; Simon K. Jensen; Chenglong Sun; Martin K. Thomsen; Anders Laustsen; Camilla G. Nielsen; Kasper Severinsen; Yingluo Xiong; Dara L. Burdette; Veit Hornung; Robert Jan Lebbink; Mogens Duch; Katherine A. Fitzgerald; Shervin Bahrami; Jakob Giehm Mikkelsen; Rune Hartmann; Søren R. Paludan

Stimulator of interferon genes (STING) is known be involved in control of DNA viruses but has an unexplored role in control of RNA viruses. During infection with DNA viruses STING is activated downstream of cGAMP synthase (cGAS) to induce type I interferon. Here we identify a STING-dependent, cGAS-independent pathway important for full interferon production and antiviral control of enveloped RNA viruses, including influenza A virus (IAV). Further, IAV interacts with STING through its conserved hemagglutinin fusion peptide (FP). Interestingly, FP antagonizes interferon production induced by membrane fusion or IAV but not by cGAMP or DNA. Similar to the enveloped RNA viruses, membrane fusion stimulates interferon production in a STING-dependent but cGAS-independent manner. Abolishment of this pathway led to reduced interferon production and impaired control of enveloped RNA viruses. Thus, enveloped RNA viruses stimulate a cGAS-independent STING pathway, which is targeted by IAV.


Stem Cells and Development | 2009

Identification of Distinct Topographical Surface Microstructures Favoring Either Undifferentiated Expansion or Differentiation of Murine Embryonic Stem Cells

Lotte Markert; Jette Lovmand; Morten Foss; Rune Hoff Lauridsen; Michael Lovmand; Ernst-Martin Füchtbauer; Annette Füchtbauer; Karin Wertz; Flemming Besenbacher; Finn Skou Pedersen; Mogens Duch

The potential of embryonic stem (ES) cells for both self-renewal and differentiation into cells of all three germ layers has generated immense interest in utilizing these cells for tissue engineering or cell-based therapies. However, the ability to culture undifferentiated ES cells without the use of feeder cells as well as means to obtain homogeneous, differentiated cell populations devoid of residual pluripotent ES cells still remain major challenges. Here we have applied murine ES cells to topographically microstructured surface libraries, BioSurface Structure Arrays (BSSA), and investigated whether these could be used to (i) identify topographically microstructured growth supports alleviating the need for feeder cells for expansion of undifferentiated ES cells and (ii) identify specific types of microstructures enforcing differentiation of ES cells. The BSSA surfaces arrays consisted of 504 different topographical microstructures each located in a tester field of 3 x 3 mm. The murine ES cell lines CJ7 and KH2 were seeded upon the BSSA libraries and specific topographical structures facilitating either undifferentiated ES cell growth or enhancing spreading indicative of differentiation of the ES cells were identified. Secondly serial passage of undifferentiated CJ7 ES cells on selected microstructures, identified in the screening of these BSSA libraries, showed that these cells had retained germ-line potential. These results indicate that one specific type of topographical surface microstructures, identified by the BSSA technology, can substitute for feeder cells and that another subset may be used to eliminate undifferentiated ES cells from a population of differentiated ES cells.


Journal of Biomedical Science | 1996

Transcriptional Silencing of Retroviral Vectors.

Anders H. Lund; Mogens Duch; Finn Skou Pedersen

Although retroviral vector systems have been found to efficiently transduce a variety of cell types in vitro, the use of vectors based on murine leukemia virus in preclinical models of somatic gene therapy has led to the identification of transcriptional silencing in vivo as an important problem. Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the tRNA primer for reverse transcription may have a major influence on transcriptional silencing. Alterations of these elements of the vector backbone as well as the use of internal promoter elements from housekeeping genes may contribute to reduce transcriptional silencing. The use of cell culture and animal models in the testing and improvement of vector design is discussed. Copyright 1996 S. Karger AG, Basel


Nano Letters | 2011

Focal Complex Maturation and Bridging on 200 nm Vitronectin but Not Fibronectin Patches Reveal Different Mechanisms of Focal Adhesion Formation

Jenny Malmström; Jette Lovmand; Stine H. Kristensen; Maria Sundh; Mogens Duch; Duncan S. Sutherland

The effects of protein type and pattern size on cell adhesion, spreading, and focal adhesion development are studied. Fibronectin and vitronectin patterns from 0.1 to 3 μm produced by colloidal lithography reveal important differences in how cells adhere to and bridge focal adhesions across protein nanopatterns versus micropatterns. Vinculin and zyxin in focal adhesions but not integrins are seen to bridge ligand gaps. Differences in protein mechanical properties are implicated as important factors in focal adhesion development.


Biomaterials | 2008

Extracellular matrix remodelling during cell adhesion monitored by the quartz crystal microbalance.

Megan S. Lord; Charlotte Modin; Morten Foss; Mogens Duch; Anne Simmons; Finn Skou Pedersen; Flemming Besenbacher; Bruce Milthorpe

A cells ability to remodel adsorbed protein layers on surfaces is influenced by the nature of the protein layer itself. Remodelling is often required to accomplish cellular adhesion and extracellular matrix formation which forms the basis for cell spreading, increased adhesion and expression of different phenotypes. The adhesion of NIH3T3 (EGFP) fibroblasts to serum protein (albumin or fibronectin) precoated tantalum (Ta) and oxidised polystyrene (PS(ox)) surfaces was examined using the quartz crystal microbalance with dissipation (QCM-D) monitoring and fluorescence microscopy. The cells were either untreated or treated with cycloheximide to examine the contribution of endogenous protein production during cell adhesion to the QCM-D response over a period of 2h. Following adsorption of albumin onto Ta and PS(ox) there was no difference detected between the response to seeding untreated and cycloheximide treated cells. The QCM-D was able to detect differences in the untreated cellular responses to fibronectin versus serum precoated Ta and PS(ox) substrates, while cycloheximide treatment of the cells produced the same QCM-D response for fibronectin and serum precoatings on each of the materials. This confirmed that the process of matrix remodelling by the cells is dependent on the underlying substrate and the preadsorbed proteins and that the QCM-D response is dominated by changes in the underlying protein layer. Changes in dissipation correspond to the development of the actin cytoskeleton as visualised by actin staining.


Gene | 1999

Expression of heterologous genes from an IRES translational cassette in replication competent murine leukemia virus vectors

Thomas Jespersen; Mogens Duch; Maria L. Carrasco; Søren Warming; Finn Skou Pedersen

We describe replication competent retroviruses capable of expressing heterologous genes during multiple rounds of infection. An internal ribosome entry site (IRES) from encephalomyocarditis virus was inserted in the U3 region of Akv- and SL3-3-murine leukemia viruses (MLV) to direct translation of neo or the enhanced green fluorescence protein gene (EGFP). Akv-MLVs with IRES-neo and IRES-EGFP cassettes replicated with titers of about 10(6) infectious units/ml while SL3-3-MLV with IRES-neo gave about 10(3)-fold lower titers. Interestingly, RNA analysis showed a drastic reduction in the amount of spliced env mRNA for the SL3-3 derived vector relative to the Akv derived vectors, seemingly contributing to its low replication capacity. The EGFP expressing Akv-MLV was genetically stable for multiple rounds of infection; marker-cassette deletion revertants appeared after several replication rounds and these revertants only slowly became dominant in the virus population.


Journal of Virology | 2000

Mutations of the Kissing-Loop Dimerization Sequence Influence the Site Specificity of Murine Leukemia Virus Recombination In Vivo

Jacob Giehm Mikkelsen; Anders H. Lund; Mogens Duch; Finn Skou Pedersen

ABSTRACT The genetic information of retroviruses is retained within a dimeric RNA genome held together by intermolecular RNA-RNA interactions near the 5′ ends. Coencapsidation of retrovirus-derived RNA molecules allows frequent template switching of the virus-encoded reverse transcriptase during DNA synthesis in newly infected cells. We have previously shown that template shifts within the 5′ leader of murine leukemia viruses occur preferentially within the kissing stem-loop motif, a cis element crucial for in vitro RNA dimer formation. By use of a forced recombination approach based on single-cycle transfer of Akv murine leukemia virus-based vectors harboring defective primer binding site sequences, we now report that modifications of the kissing-loop structure, ranging from a deletion of the entire sequence to introduction of a single point mutation in the loop motif, significantly disturb site specificity of recombination within the highly structured 5′ leader region. In addition, we find that an intact kissing-loop sequence favors optimal RNA encapsidation and vector transduction. Our data are consistent with the kissing-loop dimerization model and suggest that a direct intermolecular RNA-RNA interaction, here mediated by palindromic loop sequences within the mature genomic RNA dimer, facilitates hotspot template switching during retroviral cDNA synthesis in vivo.


Acta Biomaterialia | 2014

Control of proliferation and osteogenic differentiation of human dental-pulp-derived stem cells by distinct surface structures

Kristian Kolind; David Christian Kraft; Thea M.L. Bøggild; Mogens Duch; Jette Lovmand; Finn Skou Pedersen; D.A. Bindslev; Cody Bünger; Morten Foss; Flemming Besenbacher

The ability to control the behavior of stem cells provides crucial benefits, for example, in tissue engineering and toxicity/drug screening, which utilize the stem cells capacity to engineer new tissues for regenerative purposes and the testing of new drugs in vitro. Recently, surface topography has been shown to influence stem cell differentiation; however, general trends are often difficult to establish due to differences in length scales, surface chemistries and detailed surface topographies. Here we apply a highly versatile screening approach to analyze the interplay of surface topographical parameters on cell attachment, morphology, proliferation and osteogenic differentiation of human mesenchymal dental-pulp-derived stem cells (DPSCs) cultured with and without osteogenic differentiation factors in the medium (ODM). Increasing the inter-pillar gap size from 1 to 6 μm for surfaces with small pillar sizes of 1 and 2 μm resulted in decreased proliferation and in more elongated cells with long pseudopodial protrusions. The same alterations of pillar topography, up to an inter-pillar gap size of 4 μm, also resulted in enhanced mineralization of DPSCs cultured without ODM, while no significant trend was observed for DPSCs cultured with ODM. Generally, cells cultured without ODM had a larger deposition of osteogenic markers on structured surfaces relative to the unstructured surfaces than what was found when culturing with ODM. We conclude that the topographical design of biomaterials can be optimized for the regulation of DPSC differentiation and speculate that the inclusion of ODM alters the ability of the cells to sense surface topographical cues. These results are essential in order to transfer the use of this highly proliferative, easily accessible stem cell into the clinic for use in cell therapy and regenerative medicine.


Current HIV Research | 2004

HIV / SIV Escape from Immune Surveillance: Focus on Nef

Martin Tolstrup; Lars Østergaard; Alex Lund Laursen; Skou Pedersen; Mogens Duch

During a progressive HIV-1 infection, the gradual decrease in functional CD4+ T(helper) cells leads to immunodeficiency and eventually death in the untreated patient. The virulence role of the lentiviral accessory gene nef was first reported from deletion studies in the macaque model, and research during the past decade has revealed a pluripotent protein capable of multiple points of interference with cellular mechanisms. Importantly, Nef has the capacity to modify the plasma membrane signalling by regulation of receptor/ligand endocytosis as well as to modulate cellular regulation such as apoptosis and lymphocyte activation. This effective defence against an apparent vigorous and specific immune response is crucial for the ability of HIV-1 to persist in the host. Here we review the multitude of functions exerted by Nef and discuss the functional domains of the protein in terms of cellular interaction partners and the effect of nef mutations in the course of AIDS disease progression.

Collaboration


Dive into the Mogens Duch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders H. Lund

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge