Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamad Aman Jairajpuri is active.

Publication


Featured researches published by Mohamad Aman Jairajpuri.


BMC Genomics | 2009

A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum

Tarun Kumar Bhatt; Charu Kapil; Sameena Khan; Mohamad Aman Jairajpuri; Vinay Sharma; Daniele Santoni; Francesco Silvestrini; Elisabetta Pizzi; Amit Sharma

BackgroundPlasmodium parasites are causative agents of malaria which affects >500 million people and claims ~2 million lives annually. The completion of Plasmodium genome sequencing and availability of PlasmoDB database has provided a platform for systematic study of parasite genome. Aminoacyl-tRNA synthetases (aaRS s) are pivotal enzymes for protein translation and other vital cellular processes. We report an extensive analysis of the Plasmodium falciparum genome to identify and classify aaRSs in this organism.ResultsUsing various computational and bioinformatics tools, we have identified 37 aaRS s in P. falciparum. Our key observations are: (i) fraction of proteome dedicated to aaRS s in P. falciparum is very high compared to many other organisms; (ii) 23 out of 37 Pf-aaRS sequences contain signal peptides possibly directing them to different cellular organelles; (iii) expression profiles of Pf-aaRSs vary considerably at various life cycle stages of the parasite; (iv) several PfaaRSs posses very unusual domain architectures; (v) phylogenetic analyses reveal evolutionary relatedness of several parasite aaRS s to bacterial and plants aaRSs; (vi) three dimensional structural modelling has provided insights which could be exploited in inhibitor discovery against parasite aaRSs.ConclusionWe have identified 37 Pf-aaRSs based on our bioinformatics analysis. Our data reveal several unique attributes in this protein family. We have annotated all 37 Pf-aaRSs based on predicted localization, phylogenetics, domain architectures and their overall protein expression profiles. The sets of distinct features elaborated in this work will provide a platform for experimental dissection of this family of enzymes, possibly for the discovery of novel drugs against malaria.


Journal of Amino Acids | 2011

Serpin Inhibition Mechanism: A Delicate Balance between Native Metastable State and Polymerization

Mohammad Sazzad Khan; Poonam Singh; Asim Azhar; Asma Naseem; Qudsia Rashid; Mohammad Anaul Kabir; Mohamad Aman Jairajpuri

The serpins (serine proteinase inhibitors) are structurally similar but functionally diverse proteins that fold into a conserved structure and employ a unique suicide substrate-like inhibitory mechanism. Serpins play absolutely critical role in the control of proteases involved in the inflammatory, complement, coagulation and fibrinolytic pathways and are associated with many conformational diseases. Serpins native state is a metastable state which transforms to a more stable state during its inhibitory mechanism. Serpin in the native form is in the stressed (S) conformation that undergoes a transition to a relaxed (R) conformation for the protease inhibition. During this transition the region called as reactive center loop which interacts with target proteases, inserts itself into the center of β-sheet A to form an extra strand. Serpin is delicately balanced to perform its function with many critical residues involved in maintaining metastability. However due to its typical mechanism of inhibition, naturally occurring serpin variants produces conformational instability that allows insertion of RCL of one molecule into the β-sheet A of another to form a loop-sheet linkage leading to its polymerization and aggregation. Thus understanding the molecular basis and amino acid involved in serpin polymerization mechanism is critical to devising strategies for its cure.


Archives of Biochemistry and Biophysics | 2016

Role of heparin and non heparin binding serpins in coagulation and angiogenesis: A complex interplay.

Teena Bhakuni; Mohammad Farhan Ali; Irshad Ahmad; Shadabi Bano; Shoyab Ansari; Mohamad Aman Jairajpuri

Pro-coagulant, anti-coagulant and fibrinolytic pathways are responsible for maintaining hemostatic balance under physiological conditions. Any deviation from these pathways would result in hypercoagulability leading to life threatening diseases like myocardial infarction, stroke, portal vein thrombosis, deep vein thrombosis (DVT) and pulmonary embolism (PE). Angiogenesis is the process of sprouting of new blood vessels from pre-existing ones and plays a critical role in vascular repair, diabetic retinopathy, chronic inflammation and cancer progression. Serpins; a superfamily of protease inhibitors, play a key role in regulating both angiogenesis and coagulation. They are characterized by the presence of highly conserved secondary structure comprising of 3 β-sheets and 7-9 α-helices. Inhibitory role of serpins is modulated by binding to cofactors, specially heparin and heparan sulfate proteoglycans (HSPGs) present on cell surfaces and extracellular matrix. Heparin and HSPGs are the mainstay of anti-coagulant therapy and also have therapeutic potential as anti-angiogenic inhibitors. Many of the heparin binding serpins that regulate coagulation cascade are also potent inhibitors of angiogenesis. Understanding the molecular mechanism of the switch between their specific anti-coagulant and anti-angiogenic role during inflammation, stress and regular hemostasis is important. In this review, we have tried to integrate the role of different serpins, their interaction with cofactors and their interplay in regulating coagulation and angiogenesis.


Organic and Biomolecular Chemistry | 2016

Effect of novel triazole–amino acid hybrids on growth and virulence of Candida species: in vitro and in vivo studies

Babita Aneja; Mohammad Irfan; Charu Kapil; Mohamad Aman Jairajpuri; Ronan Maguire; Kevin Kavanagh; M. Moshahid A. Rizvi; Nikhat Manzoor; Amir Azam; Mohammad Abid

The increasing incidence of human candidiasis and the tendency of Candida species to become resistant to existing chemotherapies are well-recognized health problems. The present study demonstrates the successful synthesis of novel triazole-amino acid hybrids with potent in vitro and in vivo inhibitory activity against Candida species. Particularly, compounds 68 and 70 showed potent in vitro activity against fluconazole (FLC) resistant as well as sensitive clinical isolates of Candida albicans. Time kill curve analysis of lead inhibitors 68 and 70 showed their fungistatic nature. Secretion of hydrolytic enzymes, mainly proteinases and phospholipases, decreased considerably in the presence of 68 and 70 indicating their interference in fungal virulence. TEM analysis of Candida cells exposed to compounds 68 and 70 clearly showed morphological changes and intracellular damage as their possible mode of action. A preliminary mechanistic study carried out on the two most effective inhibitors (68 and 70) revealed the inhibition of ergosterol biosynthesis thereby causing the cells to lose their integrity and viability. The selected compounds did not show significant cytotoxicity up to a concentration of 200 μg mL-1 in the HEK293 cell line. An in silico analysis of 68 and 70 binding to a modeled C. albicans CYP51 showed critical H-bonding as well as hydrophobic interactions with the important active site residues indicating the basis of their anti-Candida role. Studies on the larvae of Galleria mellonella showed that the selected inhibitors (68 and 70) were non-toxic, did not provoke an immune response and significantly reduced Candida proliferation in vivo.


RSC Advances | 2015

Diketo acids and their amino acid/dipeptidic analogues as promising scaffolds for the development of bacterial methionine aminopeptidase inhibitors

Mir Mohammad Masood; Vijay K. Pillalamarri; Mohammad Irfan; Babita Aneja; Mohamad Aman Jairajpuri; Md. Zafaryab; M. Moshahid A. Rizvi; Umesh Yadava; Anthony Addlagatta; Mohammad Abid

Using diketoesters as the template, various derivatives were designed and the selected compounds were synthesized as bacterial methionine aminopeptidase (MetAP) inhibitors. The results of in vitro antibacterial screening revealed fifteen compounds (1a–c, 1e–h, 1j, 1l, 2a–c, 3d, 5c and 5e) as potent against different bacterial strains. By using the MTT assay on human cell line (HepG2), the viability of cell proliferation was evaluated and nine compounds (1c, 1e, 1j, 1l, 2a,b, 3d, 5c and 5e) showed no cytotoxic effect at the concentration range of 50–450 μg ml−1. In the biochemical evaluation against methionine aminopeptidase (MetAPs) from Streptococcus pneumonia (SpMetAP), Mycobacterium tuberculosis (MtMetAP), Enterococcus faecalis (EfMetAP) and human (HsMetAP), compounds displayed differential behaviour against these four enzymes. Moreover, compound 1g showed 84% inhibition of SpMetAP, while compound 3d selectively inhibited MtMetAP with 79% inhibition and little effect on HsMetAP at 100 μM concentration. At the same concentration, compound 5e exhibited 87% and 85% inhibition of EfMetAP and SpMetAP, respectively. Understanding the mode of binding through modeling at the active site provided the structural basis for the possible mode of inhibition. Together, these data will be useful for further development of diketo acid based inhibitors with improved potency and selectivity.


Protein and Peptide Letters | 2013

Antiangiogenic function of antithrombin is dependent on its conformational variation: implication for other serpins.

Asim Azhar; Poonam Singh; Qudsia Rashid; Asma Naseem; Mohammad Sazzad Khan; Mohamad Aman Jairajpuri

Endogenous angiogenesis inhibitor that specifically decreases tumor cell proliferation can be used to treat cancer since angiogenesis is required at every step of tumor progression and metastasis. Endothelial cells are the main target for the antiangiogenic therapy because they are non-transformed and easily accessible to angiogenic inhibitors. Antithrombin functions as a principal plasma protein inhibitor of blood coagulation proteinases and belongs to the family of serine protease inhibitors (serpins) which have common mechanism of inhibition. Antithrombin acquires a potent antiangiogenic activity upon conversion of the native molecule to cleaved or latent conformation. Cleaved and latent preparations of bovine and human plasma derived antithrombin inhibits capillary endothelial cell proliferation and the growth of human SK-NAS neuroblastoma and Lewis lung carcinoma tumors in mice but not the native antithrombins. The native form of antithrombin binds with high affinity to vascular heparan sulfate proteoglycans containing a specific pentasaccharide sequence and it is this cofactor interaction that activates antithrombin to maximal rate of thrombin inhibition. Upon inhibitory complex formation with target proteinases the antithrombin undergoes stressed to relaxed transformation and lose their high affinity for pentasacchride. Low affinity relaxed conformation with reduced heparin binding like cleaved and latent are antiangiogenic but native high affinity heparin binding stressed conformation is not, indicating the critical importance of heparin affinity in antithrombin antiangiogenic function. Based on evidence of interactions of the endothelial cell growth factors bFGF (basic fibroblast growth factor) and VEGF (vascular endothelial cell growth factor) with heparin like molecule in matrix, the possibility of antiangiogenic antithrombin to interfere with endothelial cell growth and angiogenesis through heparin mediated mechanism deserves serious consideration and investigation. It is also possible that cleaved and latent conformations with reduced affinity for heparins can also induce conformational change in the antithrombin which can open an epitope on the antithrombin surface for appropriate interactions on the endothelial surface for better antiangiogenic activity. This review illustrates the potential of antithrombin and other serpin family members as endogenous antiangiogenic proteins.


RSC Advances | 2016

A structure guided drug-discovery approach towards identification of Plasmodium inhibitors

Babita Aneja; Bhumika Kumar; Mohamad Aman Jairajpuri; Mohammad Abid

Rapidly increasing resistance to the currently available antimalarial drugs has drawn attention globally for the search for more potent novel drugs with a high therapeutic index. The genome sequencing of the human malarial parasite Plasmodium falciparum has provided extensive information to understand potential target pathways and efforts are being made to develop lead inhibitors with a hope to eliminate the disease. This review is focused on a brief description of key biochemical targets identified from the genome sequence of P. falciparum. This review also summarizes the work undertaken by different scientific groups over the last five years to develop inhibitors from natural, semisynthetic or synthetic sources, which will be valuable to medicinal chemists to develop novel antimalarial agents.


Journal of Thrombosis and Thrombolysis | 2012

Limitations of conventional anticoagulant therapy and the promises of non-heparin based conformational activators of antithrombin

Qudsia Rashid; Poonam Singh; Mohammad Abid; Mohamad Aman Jairajpuri

An elevated prothrombotic state is a major risk factor for venous thromboembolism, atrial fibrillation and cardiac strokes. The regulation of various coagulation cascade proteases plays an important role in determining a prothrombotic state. Clinically used anticoagulants are inhibitor of enzymes that are involved in the coagulation pathway, primarily thrombin and factor Xa. The conformational activation of antithrombin by heparin is a critical step in the inhibition of factor Xa by antithrombin. Despite heparin being the most potent physiological activator which enhances the otherwise very lethargic antithrombin inhibition of factor Xa by approximately 1,000-fold, the conventional heparin therapy poses serious complications because of heparin’s polyanionic nature and its cross-reactivity. A number of attempts have been carried out in designing alternative non-heparin based conformational activators of antithrombin for factor Xa inhibition. Studies have demonstrated appreciable activation of antithrombin by small organic molecules, but not much is known about the specificity and effects of these molecules on structure and stability. It is assumed that these activators of antithrombin perform their function by binding to heparin binding site. A recently identified cavity which links the heparin binding site to the strand 2A for antithrombin activation also seems to be an ideal target apart the heparin binding site of antithrombin. There are opportunities in discovering more activators from naturally available organic scaffolds and also for modifying such scaffolds for designing better conformational activators with minimum associated complications. This review summarizes the current literature on the mainstay anticoagulants and non-heparin based antithrombin conformation modulators.


Nature Communications | 2018

Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment

Shazia Ashraf; Hiroki Kudo; Jia Rao; Atsuo Kikuchi; Eugen Widmeier; Jennifer A. Lawson; Weizhen Tan; Tobias Hermle; Jillian K. Warejko; Shirlee Shril; Merlin Airik; Tilman Jobst-Schwan; Svjetlana Lovric; Daniela A. Braun; Heon Yung Gee; David Schapiro; Amar J. Majmundar; Carolin E. Sadowski; Werner L. Pabst; Ankana Daga; Amelie T. van der Ven; Johanna Magdalena Schmidt; Boon Chuan Low; Anjali Gupta; Brajendra K. Tripathi; Jenny S. Wong; Kirk N. Campbell; Kay Metcalfe; Denny Schanze; Tetsuya Niihori

No efficient treatment exists for nephrotic syndrome (NS), a frequent cause of chronic kidney disease. Here we show mutations in six different genes (MAGI2, TNS2, DLC1, CDK20, ITSN1, ITSN2) as causing NS in 17 families with partially treatment-sensitive NS (pTSNS). These proteins interact and we delineate their roles in Rho-like small GTPase (RLSG) activity, and demonstrate deficiency for mutants of pTSNS patients. We find that CDK20 regulates DLC1. Knockdown of MAGI2, DLC1, or CDK20 in cultured podocytes reduces migration rate. Treatment with dexamethasone abolishes RhoA activation by knockdown of DLC1 or CDK20 indicating that steroid treatment in patients with pTSNS and mutations in these genes is mediated by this RLSG module. Furthermore, we discover ITSN1 and ITSN2 as podocytic guanine nucleotide exchange factors for Cdc42. We generate Itsn2-L knockout mice that recapitulate the mild NS phenotype. We, thus, define a functional network of RhoA regulation, thereby revealing potential therapeutic targets.Nephrotic syndrome is the second most common chronic kidney disease but there are no targeted treatment strategies available. Here the authors identify mutations of six genes codifying for proteins involved in cytoskeleton remodelling and modulation of small GTPases in 17 families with nephrotic syndrome.


International Journal of Biological Macromolecules | 2016

Oxidized antithrombin is a dual inhibitor of coagulation and angiogenesis: Importance of low heparin affinity.

Asim Azhar; Mohammad Sazzad Khan; Akila Swaminathan; Asma Naseem; Suvro Chatterjee; Mohamad Aman Jairajpuri

Endogenous proteins that promote vascular endothelial cell based inhibition of angiogenesis are an attractive option for antitumor therapy. Inactive cleaved and latent conformations of antithrombin (AT) are antiangiogenic, but not its native form which is an inhibitor of proteases involved in blood coagulation. Unlike native, the cleaved and latent conformations are reactive center loop inserted conformations which binds heparin with very low affinity. We use a sulfoxy modified AT to assess the role of reactive center loop insertion and heparin affinity in antiangiogenic function. Chorioallantoic membrane assay (CAM) shows that antiangiogenic activity of latent and oxidized AT are better than thalidomide, a potent antiangiogenic drug. Wound healing experiments suggest that latent and oxidized conformations can influence endothelial cell migration. Latent and cleaved conformations of AT shows an increase in α-helical content in the presence of unfractionated heparin, but not the oxidized AT. Unlike the loop inserted polymer, cleaved and latent conformations, oxidized AT has factor Xa inhibitory activity indicating that loop insertion is not necessary for antiangiogenic role. The results of our study establish that active conformation of AT can become antiangiogenic while maintaining its anticoagulant activity possibly through chelation of low affinity heparin in the vicinity of endothelial cell.

Collaboration


Dive into the Mohamad Aman Jairajpuri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charu Kapil

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit Sharma

International Centre for Genetic Engineering and Biotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manoranjan Mahapatra

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renu Saxena

All India Institute of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge