Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed A. Abdel-Wahab is active.

Publication


Featured researches published by Mohamed A. Abdel-Wahab.


Fungal Diversity | 2015

The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts

Subashini C. Jayasiri; Kevin D. Hyde; Hiran A. Ariyawansa; Jayarama D. Bhat; Bart Buyck; Lei Cai; Yu-Cheng Dai; Kamel A. Abd-Elsalam; Damien Ertz; Iman Hidayat; Rajesh Jeewon; E. B. Gareth Jones; Ali H. Bahkali; Samantha C. Karunarathna; Jian-Kui Liu; J. Jennifer Luangsa-ard; H. Thorsten Lumbsch; Sajeewa S. N. Maharachchikumbura; Eric H. C. McKenzie; Jean-Marc Moncalvo; Masoomeh Ghobad-Nejhad; Henrik R. Nilsson; Ka-Lai Pang; O. L. Pereira; Alan J. L. Phillips; Olivier Raspé; Adam W. Rollins; Andrea I. Romero; Javier Etayo; Faruk Selçuk

Taxonomic names are key links between various databases that store information on different organisms. Several global fungal nomenclural and taxonomic databases (notably Index Fungorum, Species Fungorum and MycoBank) can be sourced to find taxonomic details about fungi, while DNA sequence data can be sourced from NCBI, EBI and UNITE databases. Although the sequence data may be linked to a name, the quality of the metadata is variable and generally there is no corresponding link to images, descriptions or herbarium material. There is generally no way to establish the accuracy of the names in these genomic databases, other than whether the submission is from a reputable source. To tackle this problem, a new database (FacesofFungi), accessible at www.facesoffungi.org (FoF) has been established. This fungal database allows deposition of taxonomic data, phenotypic details and other useful data, which will enhance our current taxonomic understanding and ultimately enable mycologists to gain better and updated insights into the current fungal classification system. In addition, the database will also allow access to comprehensive metadata including descriptions of voucher and type specimens. This database is user-friendly, providing links and easy access between taxonomic ranks, with the classification system based primarily on molecular data (from the literature and via updated web-based phylogenetic trees), and to a lesser extent on morphological data when molecular data are unavailable. In FoF species are not only linked to the closest phylogenetic representatives, but also relevant data is provided, wherever available, on various applied aspects, such as ecological, industrial, quarantine and chemical uses. The data include the three main fungal groups (Ascomycota, Basidiomycota, Basal fungi) and fungus-like organisms. The FoF webpage is an output funded by the Mushroom Research Foundation which is an NGO with seven directors with mycological expertise. The webpage has 76 curators, and with the help of these specialists, FoF will provide an updated natural classification of the fungi, with illustrated accounts of species linked to molecular data. The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups. The structure and use of the database is then explained. We would like to invite all mycologists to contribute to these web pages.


Fungal Diversity | 2015

Fungal diversity notes 1–110: taxonomic and phylogenetic contributions to fungal species

Jian Kui Liu; Kevin D. Hyde; E. B. Gareth Jones; Hiran A. Ariyawansa; Darbhe J. Bhat; Saranyaphat Boonmee; Sajeewa S. N. Maharachchikumbura; Eric H. C. McKenzie; Rungtiwa Phookamsak; Chayanard Phukhamsakda; Belle Damodara Shenoy; Mohamed A. Abdel-Wahab; Bart Buyck; Jie Chen; K. W. Thilini Chethana; Chonticha Singtripop; Dong Qin Dai; Yu Cheng Dai; Dinushani A. Daranagama; Asha J. Dissanayake; Mingkwan Doilom; Melvina J. D’souza; Xin Lei Fan; Ishani D. Goonasekara; Kazuyuki Hirayama; Sinang Hongsanan; Subashini C. Jayasiri; Ruvishika S. Jayawardena; Samantha C. Karunarathna; Wen-Jing Li

This paper is a compilation of notes on 110 fungal taxa, including one new family, 10 new genera, and 76 new species, representing a wide taxonomic and geographic range. The new family, Paradictyoarthriniaceae is introduced based on its distinct lineage in Dothideomycetes and its unique morphology. The family is sister to Biatriosporaceae and Roussoellaceae. The new genera are Allophaeosphaeria (Phaeosphaeriaceae), Amphibambusa (Amphisphaeriaceae), Brunneomycosphaerella (Capnodiales genera incertae cedis), Chaetocapnodium (Capnodiaceae), Flammeascoma (Anteagloniaceae), Multiseptospora (Pleosporales genera incertae cedis), Neogaeumannomyces (Magnaporthaceae), Palmiascoma (Bambusicolaceae), Paralecia (Squamarinaceae) and Sarimanas (Melanommataceae). The newly described species are the Ascomycota Aliquandostipite manochii, Allophaeosphaeria dactylidis, A. muriformia, Alternaria cesenica, Amphibambusa bambusicola, Amphisphaeria sorbi, Annulohypoxylon thailandicum, Atrotorquata spartii, Brunneomycosphaerella laburni, Byssosphaeria musae, Camarosporium aborescentis, C. aureum, C. frutexensis, Chaetocapnodium siamensis, Chaetothyrium agathis, Colletotrichum sedi, Conicomyces pseudotransvaalensis, Cytospora berberidis, C. sibiraeae, Diaporthe thunbergiicola, Diatrype palmicola, Dictyosporium aquaticum, D. meiosporum, D. thailandicum, Didymella cirsii, Dinemasporium nelloi, Flammeascoma bambusae, Kalmusia italica, K. spartii, Keissleriella sparticola, Lauriomyces synnematicus, Leptosphaeria ebuli, Lophiostoma pseudodictyosporium, L. ravennicum, Lophiotrema eburnoides, Montagnula graminicola, Multiseptospora thailandica, Myrothecium macrosporum, Natantispora unipolaris, Neogaeumannomyces bambusicola, Neosetophoma clematidis, N. italica, Oxydothis atypica, Palmiascoma gregariascomum, Paraconiothyrium nelloi, P. thysanolaenae, Paradictyoarthrinium tectonicola, Paralecia pratorum, Paraphaeosphaeria spartii, Pestalotiopsis digitalis, P. dracontomelon, P. italiana, Phaeoisaria pseudoclematidis, Phragmocapnias philippinensis, Pseudocamarosporium cotinae, Pseudocercospora tamarindi, Pseudotrichia rubriostiolata, P. thailandica, Psiloglonium multiseptatum, Saagaromyces mangrovei, Sarimanas pseudofluviatile, S. shirakamiense, Tothia spartii, Trichomerium siamensis, Wojnowicia dactylidicola, W. dactylidis and W. lonicerae. The Basidiomycota Agaricus flavicentrus, A. hanthanaensis, A. parvibicolor, A. sodalis, Cantharellus luteostipitatus, Lactarius atrobrunneus, L. politus, Phylloporia dependens and Russula cortinarioides are also introduced. Epitypifications or reference specimens are designated for Hapalocystis berkeleyi, Meliola tamarindi, Pallidocercospora acaciigena, Phaeosphaeria musae, Plenodomus agnitus, Psiloglonium colihuae, P. sasicola and Zasmidium musae while notes and/or new sequence data are provided for Annulohypoxylon leptascum, A. nitens, A. stygium, Biscogniauxia marginata, Fasciatispora nypae, Hypoxylon fendleri, H. monticulosum, Leptosphaeria doliolum, Microsphaeropsis olivacea, Neomicrothyrium, Paraleptosphaeria nitschkei, Phoma medicaginis and Saccotheciaceae. A full description of each species is provided with light micrographs (or drawings). Molecular data is provided for 90 taxa and used to generate phylogenetic trees to establish a natural classification for species.


Fungal Diversity | 2015

Towards a natural classification and backbone tree for Sordariomycetes

Sajeewa S. N. Maharachchikumbura; Kevin D. Hyde; E. B. Gareth Jones; Eric H. C. McKenzie; Shi-Ke Huang; Mohamed A. Abdel-Wahab; Dinushani A. Daranagama; Monika C. Dayarathne; Melvina J. D’souza; Ishani D. Goonasekara; Sinang Hongsanan; Ruvishika S. Jayawardena; Paul M. Kirk; Sirinapa Konta; Jian-Kui Liu; Zuo-Yi Liu; Chada Norphanphoun; Ka-Lai Pang; Rekhani H. Perera; Indunil C. Senanayake; Qiu-Ju Shang; Belle Damodara Shenoy; Yuan-Pin Xiao; Ali H. Bahkali; Ji-Chuan Kang; Sayanh Somrothipol; Satinee Suetrong; Ting-Chi Wen; Jianchu Xu

Sordariomycetes is one of the largest classes of Ascomycota and is characterised by perithecial ascomata and inoperculate unitunicate asci. The class includes many important plant pathogens, as well as endophytes, saprobes, epiphytes, and fungicolous, lichenized or lichenicolous taxa. The class includes freshwater, marine and terrestrial taxa and has a worldwide distribution. This paper provides an updated outline of the Sordariomycetes and a backbone tree incorporating asexual and sexual genera in the class. Based on phylogeny and morphology we introduced three subclasses; Diaporthomycetidae, Lulworthiomycetidae and Meliolomycetidae and five orders; Amplistromatales, Annulatascales, Falcocladiales, Jobellisiales and Togniniales. The outline is based on literature to the end of 2014 and the backbone tree published in this paper. Notes for 397 taxa with information, such as new family and genera novelties, novel molecular data published since the Outline of Ascomycota 2009, and new links between sexual and asexual genera and thus synonymies, are provided. The Sordariomycetes now comprises six subclasses, 28 orders, 90 families and 1344 genera. In addition a list of 829 genera with uncertain placement in Sordariomycetes is also provided.


Fungal Diversity | 2016

Families of Sordariomycetes

Sajeewa S. N. Maharachchikumbura; Kevin D. Hyde; E. B. Gareth Jones; Eric H. C. McKenzie; Jayarama D. Bhat; Monika C. Dayarathne; Shi Ke Huang; Chada Norphanphoun; Indunil C. Senanayake; Rekhani H. Perera; Qiu Ju Shang; Yuan-Pin Xiao; Melvina J. D’souza; Sinang Hongsanan; Ruvishika S. Jayawardena; Dinushani A. Daranagama; Sirinapa Konta; Ishani D. Goonasekara; Wen Ying Zhuang; Rajesh Jeewon; Alan J. L. Phillips; Mohamed A. Abdel-Wahab; Abdullah M. Al-Sadi; Ali H. Bahkali; Saranyaphat Boonmee; Nattawut Boonyuen; Ratchadawan Cheewangkoon; Asha J. Dissanayake; Ji-Chuan Kang; Qi Rui Li

Sordariomycetes is one of the largest classes of Ascomycota that comprises a highly diverse range of fungi characterized mainly by perithecial ascomata and inoperculate unitunicate asci. The class includes many important plant pathogens, as well as endophytes, saprobes, epiphytes, coprophilous and fungicolous, lichenized or lichenicolous taxa. They occur in terrestrial, freshwater and marine habitats worldwide. This paper reviews the 107 families of the class Sordariomycetes and provides a modified backbone tree based on phylogenetic analysis of four combined loci, with a maximum five representative taxa from each family, where available. This paper brings together for the first time, since Barrs’ 1990 Prodromus, descriptions, notes on the history, and plates or illustrations of type or representative taxa of each family, a list of accepted genera, including asexual genera and a key to these taxa of Sordariomycetes. Delineation of taxa is supported where possible by molecular data. The outline is based on literature to the end of 2015 and the Sordariomycetes now comprises six subclasses, 32 orders, 105 families and 1331 genera. The family Obryzaceae and Pleurotremataceae are excluded from the class.


American Journal of Botany | 2001

Aliquandostipitaceae, a new family for two new tropical ascomycetes with unusually wide hyphae and dimorphic ascomata

Patrik Inderbitzin; Sara Landvik; Mohamed A. Abdel-Wahab; Mary L. Berbee

In two short surveys of lignicolous, fruitbody-forming ascomycetes in Thailand and southern China, six species were found, of which five were new to science. Two fungi with affinity to the Dothideomycetes, one from Thailand and one from China, are described here in the new genus ALIQUANDOSTIPITE: and included in the new family Aliquandostipitaceae. Aliquandostipite khaoyaiensis was found in a tropical rain forest in Thailand and A. sunyatsenii in a small stream in southern China. Both new species are closely related based on morphological and molecular characteristics and with uncertain affinity to other taxa of the Euascomycetes based on phylogenetic analyses of SSU rDNA sequences. The distinguishing features of the new species are the presence of both sessile and stalked ascomata side by side on the substratum and the widest hyphae known from ascomycetes.


Mycological Progress | 2010

Phylogenetic evaluation of anamorphic species of Cirrenalia and Cumulospora with the description of eight new genera and four new species

Mohamed A. Abdel-Wahab; Ka-Lai Pang; Takahiko Nagahama; Faten A. Abdel-Aziz; E. B. Gareth Jones

Four new helicoid anamorphic fungi collected from marine habitats in Egypt and Japan are described. Three marine and one terrestrial Cirrenalia species along with two Cumulospora species and the four new fungi were sequenced for LSU and SSU rDNA. Phylogenetic analyses of the generated sequences, along with those from GenBank, confirmed the polyphyly of the genera Cirrenalia and Cumulospora, and new genera are erected to accommodate the displaced species. Eight new genera, four new species and six new combinations are made: 1. Halazoon anam.-gen. nov. (Halazoon melhae sp. nov., H. fuscus for Cirrenalia fusca), 2. Moheitospora anam.-gen. nov. (Moheitospora fruticosae sp. nov., M. adarca for Cirrenalia adarca), 3. Moleospora anam.-gen nov. (Moleospora maritima sp. nov.), and 4. Glomerulispora anam.-gen. nov. (Glomerulispora mangrovis sp. nov); Cirrenalia pygmea, Cirrenalia tropicale and Cumulospora varius are transferred to the new genera, 5. Hydea anam.-gen. nov, 6. Matsusporium anam.-gen. nov., and 7. Moromyces anam.-gen. nov., respectively. These genera can be assigned to the order Lulworthiales, TBM (Torpedospora/Bertia/Melanospora) clade, while Cirrenalia macrocephala is nested within the order Halosphaeriales. Few morphological characters delineate the genera and species assigned to the Lulworthiales and this aspect is discussed in relation to the molecular data. The phylogenetic position of the terrestrial species, Cirrenalia japonica, shows that it is a member of the order Pleosporales, and a new genus, 8. Hiogispora anam.-gen. nov. is proposed for the fungus.


Mycoscience | 2001

Halosarpheia unicellularis sp. nov. (Halosphaeriales, Ascomycota) based on morphological and molecular evidence

Mohamed A. Abdel-Wahab; Ka-Lai Pang; Hassan Mohamed Ei-Sharouny; E. B. Gareth Jones

Halosarpheia unicellularis sp. nov. is described from decayed attached wood ofAvicennia marina collected from two mangrove sites in the Red Sea, Egypt. The ascomycete is compared with other marine taxa having ascospores with polar unfurling appendages. It is also compared with other marine genera with oval, round or ellipsoid hyaline, unicellular ascospores, but for which appendages have not been reported. Molecular data confirms the assignment of the fungus toHalosarpheia which forms a clade with the type speciesHalosarpheia fibrosa.


IMA Fungus | 2016

Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales).

Martina Réblová; Andrew N. Miller; Amy Y. Rossman; Keith A. Seifert; Pedro W. Crous; David L. Hawksworth; Mohamed A. Abdel-Wahab; Paul F. Cannon; Dinushani A. Daranagama; Z. Wilhelm de Beer; Shi Ke Huang; Kevin D. Hyde; Ruvvishika Jayawardena; Walter M. Jaklitsch; E. B. Gareth Jones; Yu Ming Ju; Caroline Judith; Sajeewa S. N. Maharachchikumbura; Ka-Lai Pang; Liliane E. Petrini; Huzefa A. Raja; Andrea I. Romero; Carol A. Shearer; Indunil C. Senanayake; Hermann Voglmayr; Bevan S. Weir; Nalin N. Wijayawarden

With the advance to one scientific name for each fungal species, the generic names in the class Sordariomycetes typified by sexual and asexual morphs are evaluated based on their type species to determine if they compete with each other for use or protection. Recommendations are made for which of the competing generic names should be used based on criteria such as priority, number of potential names changes, and frequency of use. Some recommendations for well-known genera include Arthrinium over Apiospora, Colletotrichum over Glomerella, Menispora over Zignoëlla, Microdochium over Monographella, Nigrospora over Khuskia, and Plectosphaerella over Plectosporium. All competing generic names are listed in a table of recommended names along with the required action. If priority is not accorded to sexually typified generic names after 2017, only four names would require formal protection: Chaetosphaerella over Oedemium, Diatrype over Libertella, Microdochium over Monographella, and Phaeoacremonium over Romellia and Togninia. Concerning species in the recommended genera, one replacement name (Xylaria benjaminii nom. nov.) is introduced, and the following new combinations are made: Arthrinium sinense, Chloridium caesium, C. chloroconium, C. gonytrichii, Corollospora marina, C. parvula, C. ramulosa, Juncigena fruticosae, Melanospora simplex, Seimatosporium massarina, Sporoschisma daemonoropis, S. taitense, Torpedospora mangrovei, Xylaria penicilliopsis, and X. termiticola combs. nov.


Mycoscience | 2000

Three new marine ascomycetes from driftwood in Australian sand dunes

Mohamed A. Abdel-Wahab; E. B. Gareth Jones

Caryospora australiensis sp. nov.,Platystomum scabridisporum sp. nov. andSavoryella melanospora sp. nov. are described from driftwood collected from a sand dune at Rye, on the Mornington Peninsula Nature Park, Victoria, Australia. These species are compared with other taxa in these and related genera.


Mycotaxon | 2011

Lolia aquatica gen. et sp. nov. (Lindgomycetaceae, Pleosporales), a new coelomycete from freshwater habitats in Egypt

Faten A. Abdel-Aziz; Mohamed A. Abdel-Wahab

An unknown coelomycete that was collected from the River Nile and associated irrigation canals in Egypt is described. The fungus is characterized by gelatinous pearl white acervuli, a peridium that forms textura intricata, holoblastic conidia that have one basal excentric cellular appendage, and up to 3-5 sub-apical cellular attenuating appendages. Based on morphology, no described genus can accommodate this new fungus, so it is described herein as new genus and species. Phylogenetic analyses of the 28S ribosomal large subunit (LSU) rDNA sequence placed the new fungus in the family Lindgomycetaceae , Pleosporales, Dothideomycetes.

Collaboration


Dive into the Mohamed A. Abdel-Wahab's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin D. Hyde

Mae Fah Luang University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ka-Lai Pang

National Taiwan Ocean University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takahiko Nagahama

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satinee Suetrong

Thailand National Science and Technology Development Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge