Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed A. Farag is active.

Publication


Featured researches published by Mohamed A. Farag.


Plant Physiology | 2007

Metabolomics Reveals Novel Pathways and Differential Mechanistic and Elicitor-Specific Responses in Phenylpropanoid and Isoflavonoid Biosynthesis in Medicago truncatula Cell Cultures

Mohamed A. Farag; David V. Huhman; Richard A. Dixon; Lloyd W. Sumner

High-performance liquid chromatography coupled to ultraviolet photodiode array detection and ion-trap mass spectrometry was used to analyze the intra- and extracellular secondary product metabolome of Medicago truncatula cell suspension cultures responding to yeast elicitor (YE) or methyl jasmonate (MeJA). Data analysis revealed three phases of intracellular response to YE: a transient response in mainly (iso)flavonoid metabolites such as formononetin and biochanin-A that peaked at 12 to 18 h following elicitation and then declined; a sustained response through 48 h for compounds such as medicarpin and daidzin; and a lesser delayed and protracted response starting at 24 h postelicitation, e.g. genistein diglucoside. In contrast, most compounds excreted to the culture medium reached maximum levels at 6 to 12 h postelicitation and returned to basal levels by 24 h. The response to MeJA differed significantly from that to YE. Although both resulted in accumulation of the phytoalexin medicarpin, coordinated increases in isoflavonoid precursors were only observed for YE and not MeJA-treated cells. However, MeJA treatment resulted in a correlated decline in isoflavone glucosides, and did not induce the secretion of metabolites into the culture medium. Three novel methylated isoflavones, 7-hydroxy-6,4′-dimethoxyisoflavone (afrormosin), 6-hydroxy-7,4′-dimethoxyisoflavone (alfalone), and 5,7-dihydroxy-4′,6-dimethoxy isoflavone (irisolidone), were induced by YE, and labeling studies indicated that the first two were derived from formononetin. Our results highlight the metabolic flexibility within the isoflavonoid pathway, suggest new pathways for complex isoflavonoid metabolism, and indicate differential mechanisms for medicarpin biosynthesis depending on the nature of elicitation.


Phytochemistry | 2012

Comparative metabolite profiling and fingerprinting of medicinal licorice roots using a multiplex approach of GC-MS, LC-MS and 1D NMR techniques.

Mohamed A. Farag; Andrea Porzel; Ludger A. Wessjohann

Glycyrrhiza glabra, commonly known as licorice, is a popular herbal supplement used for the treatment of chronic inflammatory conditions and possesses anticancer and antiviral activities. This species contains a plethora of phytochemicals including terpenoids, saponins, flavonoids, polyamines and polysaccharides. The full complement of bioactive compounds has yet to be elucidated, a step necessary in order to explain its medicinal use. There are over 30 species in the Glycyrrhiza genus world-wide, most of which have been little characterized in terms of phytochemical or pharmacological properties. Here, large scale multi-targeted metabolic profiling and fingerprinting techniques were utilized to help gain a broader insight into Glycyrrhiza species chemical composition. UV, MS and NMR spectra of extracted components were connected with NMR, MS, and multivariate analyses data from Glycyrrhiza glabra, Glycyrrhiza uralensis, Glycyrrhiza inflata and Glycyrrhiza echinata. Major peaks in (1)H NMR and MS spectra contributing to the discrimination among species were assigned as those of glycyrrhizin, 4-hydroxyphenyl acetic acid, and glycosidic conjugates of liquiritigenin/isoliquiritigenin. Primary metabolites profiling using GC-MS revealed the presence of cadaverine, an amino acid, exclusively found in G. inflata roots. Both LC-MS and NMR were found effective techniques in sample classification based on genetic and or geographical origin as revealed from derived PCA analysis.


Fems Microbiology Reviews | 2015

Role of bacterial volatile compounds in bacterial biology

Bianca Audrain; Mohamed A. Farag; Choong-Min Ryu; Jean-Marc Ghigo

Bacterial interactions with neighboring microorganisms via production of small metabolites enable bacteria to respond and adapt to environmental changes. The study of intercellular interactions primarily focused on soluble metabolites, but bacteria also produce and release into their headspace a wide variety of volatile secondary metabolites, the ecological roles of which have generally been overlooked. However, bacterial volatile compounds are known to contribute to interkingdom interactions (plant, fungi and nematodes), and recent studies also identified their at-a-distance influence on bacterial behavior. The present review describes the biological roles of bacterial volatile compounds in inter- and intraspecies bacterial interactions, a new and yet unexplored research area, with potential clinical and industrial applications.


Natural Product Research | 2010

Chemical composition, insecticidal and insect repellent activity of Schinus molle L. leaf and fruit essential oils against Trogoderma granarium and Tribolium castaneum.

Essam Abdel-Sattar; Ahmed A. Zaitoun; Mohamed A. Farag; Sabah H. El Gayed; Fathalla M. Harraz

Fruit and leaf essential oils of Schinus molle showed insect repellent and insecticidal activity against Trogoderma granarium and Tribolium castaneum. In these oils, 65 components were identified by GC-MS analysis. Hydrocarbons dominated the oil composition with monoterpenes occurring in the largest amounts in fruits and leaves, 80.43 and 74.84%, respectively. p-Cymene was identified as a major component in both oils. The high yield and efficacy of S. molle essential oil against T. granarium and T. castaneum suggest that it may provide leads for active insecticidal agents.


Metabolomics | 2012

Metabolite profiling and fingerprinting of commercial cultivars of Humulus lupulus L. (hop): a comparison of MS and NMR methods in metabolomics

Mohamed A. Farag; Andrea Porzel; Jürgen Schmidt; Ludger A. Wessjohann

Hop (Humulus lupulus L. Cannabaceae) is an economically important crop. In addition to its role in beer brewing, its pharmaceutical applications have been of increasing importance in recent years. Bitter acids (prenylated polyketides), prenylflavonoids and essential oils, are the primary phytochemical components that account for hop medicinal value. An integrated approach utilizing nuclear magnetic resonance (NMR) and mass spectrometry (MS) techniques was used for the first large-scale metabolite profiling in Humulus lupulus. Resins and extracts prepared from 13 hop cultivars were analysed using NMR, liquid chromatography (LC)-MS and fourier transform ion cyclotron resonance (FTICR)-MS in parallel and subjected to principal component analysis (PCA). A one pot extraction method, compatible with both MS and NMR measurement was developed to help rule out effects due to differences in extraction protocols. Under optimised conditions, we were able to simultaneously quantify and identify 46 metabolites including 18 bitter acids, 12 flavonoids, 3 terpenes, 3 fatty acids and 2 sugars. Cultivars segregation in PCA plots generated from both LC-MS and NMR data were found comparable and mostly influenced by differences in bitter acids composition among cultivars. FTICR-MS showed inconsistent PCA loading plot results which are likely due to preferential ionisation and also point to the presence of novel isoprenylated metabolites in hop. This comparative metabolomic approach provided new insights for the complementariness and coincidence for these different technology platform applications in hop and similar plant metabolomics projects.


Metabolomics | 2014

Metabolite profiling and fingerprinting of Hypericum species: a comparison of MS and NMR metabolomics

Andrea Porzel; Mohamed A. Farag; Julia Mülbradt; Ludger A. Wessjohann

Hypericum perforatum, commonly known as St. John’s wort, is a popular herbal supplement used for the treatment of mild to moderate depression. The major secondary metabolites of St. John’s wort extracts include phenylpropanoids, flavonoids, xanthones, phloroglucinols, and naphthodianthrones. There are over 400 species in the genus Hypericum world-wide, most of which are little or not characterized in terms of phytochemical or pharmacological properties. Metabolomics techniques were used to investigate the natural product diversity within the genus Hypericum (Hypericaceae) and its correlation to bioactivity, exemplified by cytotoxic properties. Utilizing nuclear magnetic resonance (NMR) fingerprinting and mass spectrometry (MS) metabolic profiling techniques, MS and NMR spectra of extracts from H. perforatum, H. polyphyllum, H. tetrapterum, H. androsaemum, H. inodorum, H. undulatum and H. kouytchense were evaluated and submitted to statistical multivariate analyses. Although comparable score plots in principal component analysis were derived from both MS and NMR datasets, loading plots reveal, that different set of metabolites contribute for species segregation in each dataset. Major peaks in 1H NMR and MS spectra contributing to species discrimination were assigned as those of hyperforins, lipids, chlorogenic and shikimic acid. Shikimic acid and its downstream phenylpropanoids were more enriched in H. perforatum, H. androsaemum, H. kouytchense and H. inodorum extracts; whereas a novel hyperforin was found exclusively in H. polyphyllum. Next to H. perforatum, H. polyphyllum and H. tetrapterum show the highest levels of hypericins, and H. perforatum and H. polyphyllum are highest in phloroglucinols, suggesting that the latter species might be used as an alternative to St. John’s wort. However, the major hyperforin-type compound in H. polyphyllum possesses a novel constitution of yet unknown bioactivity. Anti-cancer in vitro assays to evaluate the ability of extracts from Hypericum species in inhibiting prostate and colon cancer growth suggest that such bioactivity might be predicted by gross metabolic profiling.


Planta Medica | 2012

Metabolome classification of commercial Hypericum perforatum (St. John's Wort) preparations via UPLC-qTOF-MS and chemometrics.

Mohamed A. Farag; Ludger A. Wessjohann

The growing interest in the efficacy of phytomedicines and herbal supplements but also the increase in legal requirements for safety and reliable contents of active principles drive the development of analytical methods for the quality control of complex, multicomponent mixtures as found in plant extracts of value for the pharmaceutical industry. Here, we describe an ultra-performance liquid chromatography method (UPLC) coupled with quadrupole time of flight mass spectrometry (qTOF-MS) measurements for the large scale analysis of H. perforatum plant material and its commercial preparations. Under optimized conditions, we were able to simultaneously quantify and identify 21 metabolites including 4 hyperforins, 3 catechins, 3 naphthodianthrones, 5 flavonoids, 3 fatty acids, and a phenolic acid. Principal component analysis (PCA) was used to ensure good analytical rigorousness and define both similarities and differences among Hypericum samples. A selection of batches from 9 commercially available H. perforatum products available on the German and Egyptian markets showed variable quality, particularly in hyperforins and fatty acid content. PCA analysis was able to discriminate between various preparations according to their global composition, including differentiation between various batches from the same supplier. To the best of our knowledge, this study provides the first approach utilizing UPLC-MS-based metabolic fingerprinting to reveal secondary metabolite compositional differences in Hypericum extract.


Food Chemistry | 2014

Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC–MS coupled to chemometrics

Mohamed A. Farag; Haidy A. Gad; Andreas G. Heiss; Ludger A. Wessjohann

Nigella sativa, commonly known as black cumin seed, is a popular herbal supplement that contains numerous phytochemicals including terpenoids, saponins, flavonoids, alkaloids. Only a few of the ca. 15 species in the genus Nigella have been characterized in terms of phytochemical or pharmacological properties. Here, large scale metabolic profiling including UPLC-PDA-MS and GC-MS with further multivariate analysis was utilized to classify 6 Nigella species. Under optimized conditions, we were able to annotate 52 metabolites including 8 saponins, 10 flavonoids, 6 phenolics, 10 alkaloids, and 18 fatty acids. Major peaks in UPLC-MS spectra contributing to the discrimination among species were assigned as kaempferol glycosidic conjugates, with kaempferol-3-O-[glucopyranosyl-(1→2)-galactopyranosyl-(1→2)-glucopyranoside, identified as potential taxonomic marker for N. sativa. Compared with GC-MS, UPLC-MS was found much more efficient in Nigella sample classification based on genetic and geographical origin. Nevertheless, both GC-MS and UPLC-MS support the remote position of Nigella nigellastrum in relation to the other taxa.


Phytochemistry | 2013

Metabolomics driven analysis of artichoke leaf and its commercial products via UHPLC-q-TOF-MS and chemometrics

Mohamed A. Farag; Sherweit H. El-Ahmady; Fatma S. Elian; Ludger A. Wessjohann

The demand to develop efficient and reliable analytical methods for the quality control of herbal medicines and nutraceuticals is on the rise, together with an increase in the legal requirements for safe and consistent levels of active principles. Here, we describe an ultra-high performance liquid chromatography method (UHPLC) coupled with quadrupole high resolution time of flight mass spectrometry (qTOF-MS) analysis for the comprehensive measurement of metabolites from three Cynara scolymus (artichoke) cultivars: American Green Globe, French Hyrious, and Egyptian Baladi. Under optimized conditions, 50 metabolites were simultaneously quantified and identified including: eight caffeic acid derivatives, six saponins, 12 flavonoids and 10 fatty acids. Principal component analysis (PCA) was used to define both similarities and differences among the three artichoke leaf cultivars. In addition, batches from seven commercially available artichoke market products were analysed and showed variable quality, particularly in caffeic acid derivatives, flavonoid and fatty acid contents. PCA analysis was able to discriminate between various preparations, including differentiation between various batches from the same supplier. To the best of our knowledge, this study provides the first approach utilizing UHPLC-MS based metabolite fingerprinting to reveal secondary metabolite compositional differences in artichoke leaf extracts.


Journal of Advanced Research | 2015

Two dimensional NMR spectroscopic approaches for exploring plant metabolome: A review

Engy A. Mahrous; Mohamed A. Farag

Graphical abstract

Collaboration


Dive into the Mohamed A. Farag's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Achim Meyer

Leibniz Center for Tropical Marine Ecology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge