Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed A. Fouda is active.

Publication


Featured researches published by Mohamed A. Fouda.


International Journal of Pharmaceutics | 2015

Preparation, characterization and in vivo evaluation of curcumin self-nano phospholipid dispersion as an approach to enhance oral bioavailability

Ahmed N. Allam; Ibrahim A. Komeil; Mohamed A. Fouda; Ossama Y. Abdallah

The aim of this study was to examine the efficacy of self-nano phospholipid dispersions (SNPDs) based on Phosal(®) to improve the oral bioavailability of curcumin (CUR). SNPDs were prepared with Phosal(®) 53 and Miglyol 812 at different surfactant ratio. Formulations were evaluated for particle size, polydispersity index, zeta potential, and robustness toward dilution, TEM as well as in vitro drug release. The in vivo oral absorption of selected formulations in comparison to drug suspension was evaluated in rats. Moreover, formulations were assessed for in vitro characteristic changes before and after storage. The SNPDs were miscible with water in any ratio and did not show any phase separation or drug precipitation. All the formulas were monodisperse with nano range size from 158±2.6 nm to 610±6.24 nm. They passed the pharmacopeial tolerance for CUR dissolution. No change in dissolution profile and physicochemical characteristics was detected after storage. CUR-SNPDs are found to be more bioavailable compared with suspension during an in vivo study in rats and in vitro release studies failed to imitate the in vivo conditions. These formulations might be new alternative carriers that enhance the oral bioavailability of poorly water-soluble molecules, such as CUR.


Toxicology and Applied Pharmacology | 2011

Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control

Mahmoud M. El-Mas; Sahar M. El-Gowilly; Mohamed A. Fouda; Evan I. Saad

Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100μg/kg i.v.) dose-dependently reduced BRS(SNP) in contrast to no effect on BRS(PE). BRS(SNP) was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS(SNP) were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS(SNP) was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A(2A) antagonist), or VUF5574 (A(3) antagonist). In contrast, BRS(SNP) was preserved after blockade of A(1) (DPCPX) or A(2B) (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS(SNP) depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A(2A) receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms.


Journal of Pharmacology and Experimental Therapeutics | 2012

Estrogen Provokes the Depressant Effect of Chronic Nicotine on Vagally Mediated Reflex Chronotropism in Female Rats

Mahmoud M. El-Mas; Hanan M. El-Gowelli; Sahar M. El-Gowilly; Mohamed A. Fouda; Mai M. Helmy

We recently reported that acute nicotine impairs reflex tachycardic activity in estrogen-depleted, but not estrogen-repleted, female rats, suggesting a restraining influence for estrogen against the nicotine effect. In this study, we tested whether the baroreflex-protective effect of estrogen can be replicated when nicotine was administered chronically. We also report on the dose dependence and autonomic modulation of the nicotine-baroreflex interaction. The effects of nicotine (0.5, 1, or 2 mg/kg/day for 14 days) on baroreflex curves relating changes in heart rate to increases [phenylephrine (PE)] or decreases [sodium nitroprusside (SNP)] in blood pressure were evaluated in sham-operated (SO), ovariectomized (OVX), and estrogen-replaced OVX (OVXE2) rats. Slopes of the curves were taken as a measure of baroreflex sensitivity (BRSPE and BRSSNP). In SO rats, both reflex bradycardic and tachycardic responses were attenuated by nicotine in a dose-related fashion. In nicotine-treated rats, blockade of β-adrenergic (propranolol), but not muscarinic (atropine), receptors caused additional reductions in reflex chronotropic responses, implying that nicotine selectively impairs reflex vagal activity. OVX selectively decreased BRSPE but not BRSSNP and abolished the nicotine-induced impairment of either response. These effects of OVX were reversed after treatment with estrogen or the estrogen receptor modulator raloxifene. In atropine-treated rats, comparable BRS values were demonstrated in all rat preparations regardless of the estrogen or nicotine milieu. Collectively, the inhibition of vagal activity accounts for the depressant effect of chronic nicotine on baroreflex activity. Furthermore, contrary to nicotines acute effects, the baroreflex-attenuating effect of chronic nicotine is exacerbated by estrogen.


Toxicology and Applied Pharmacology | 2012

Central estrogenic pathways protect against the depressant action of acute nicotine on reflex tachycardia in female rats

Mahmoud M. El-Mas; Mohamed A. Fouda; Sahar M. El-Gowilly; Evan I. Saad

We have previously shown that acute exposure of male rats to nicotine preferentially attenuates baroreceptor-mediated control of reflex tachycardia in contrast to no effect on reflex bradycardia. Here, we investigated whether female rats are as sensitive as their male counterparts to the baroreflex depressant effect of nicotine and whether this interaction is modulated by estrogen. Baroreflex curves relating reflex chronotropic responses evoked by i.v. doses (1-16 μg/kg) of phenylephrine (PE) or sodium nitroprusside (SNP), were constructed in conscious freely moving proestrus, ovariectomized (OVX), and estrogen (50 μg/kg/day s.c., 5 days)-replaced OVX (OVXE₂) rats. Slopes of the curves were taken as a measure of baroreflex sensitivity (BRS(PE) and BRS(SNP)). Nicotine (100 μg/kg i.v.) reduced BRS(SNP) in OVX rats but not in proestrus or OVXE₂ rats. The attenuation of reflex tachycardia by nicotine was also evident in diestrus rats, which exhibited plasma estrogen levels similar to those of OVX rats. BRS(PE) was not affected by nicotine in all rat preparations. Experiments were then extended to determine whether central estrogenic receptors modulate the nicotine-BRS(SNP) interaction. Intracisteral (i.c.) treatment of OVX rats with estrogen sulfate (0.2 μg/rat) abolished the BRS(SNP) attenuating effect of i.v. nicotine. This protective effect of estrogen disappeared when OVX rats were pretreated with i.c. ICI 182,780 (50 μg/rat, selective estrogen receptor antagonist). Together, these findings suggest that central neural pools of estrogen receptors underlie the protection offered by E₂ against nicotine-induced baroreceptor dysfunction in female rats.


PLOS ONE | 2014

Impairment of Nitric Oxide Synthase but Not Heme Oxygenase Accounts for Baroreflex Dysfunction Caused by Chronic Nicotine in Female Rats

Mohamed A. Fouda; Hanan M. El-Gowelli; Sahar M. El-Gowilly; Laila Rashed; Mahmoud M. El-Mas

We recently reported that chronic nicotine impairs reflex chronotropic activity in female rats. Here, we sought evidence to implicate nitric oxide synthase (NOS) and/or heme oxygenase (HO) in the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate to increases (phenylephrine) or decreases (sodium nitroprusside) in blood pressure were generated in conscious female rats treated with nicotine or saline in absence and presence of pharmacological modulators of NOS or HO activity. Compared with saline-treated rats, nicotine (2 mg/kg/day i.p., for 14 days) significantly reduced the slopes of baroreflex curves, a measure of baroreflex sensitivity (BRS). Findings that favor the involvement of NOS inhibition in the nicotine effect were (i) NOS inhibition (N ω-Nitro-L-arginine methyl ester, L-NAME) reduced BRS in control rats but failed to do so in nicotine-treated rats, (ii) L-arginine, NO donor, reversed the BRS inhibitory effect of nicotine. Alternatively, HO inhibition (zinc protoporphyrin IX, ZnPP) had no effect on BRS in nicotine- or control rats and failed to reverse the beneficial effect of L-arginine on nicotine-BRS interaction. Similar to female rats, BRS was reduced by L-NAME, but not ZnPP, in male rats and the L-NAME effect was not accentuated after concomitant administration of nicotine. Baroreflex dysfunction caused by nicotine in female rats was blunted after supplementation with hemin (HO inducer) but not tricarbonyldichlororuthenium(II) dimer (CORM-2), a carbon monoxide (CO) releasing molecule, or bilirubin, the breakdown product of heme catabolism. The facilitatory effect of hemin was abolished upon simultaneous treatment with L-NAME or 1H-[1], [2], [4] oxadiazolo[4,3-a] quinoxalin-1-one (inhibitor of soluble guanylate cyclase, sGC). The activities of HO and NOS in brainstem tissues were also significantly increased by hemin. Thus, the inhibition of NOS, but not HO, accounts for the baroreflex depressant of chronic nicotine. Further, hemin alleviates the nicotine effect through a mechanism that is NOS/sGC but not CO or bilirubin-dependent.


Toxicology and Applied Pharmacology | 2015

The estrogen-dependent baroreflex dysfunction caused by nicotine in female rats is mediated via NOS/HO inhibition: Role of sGC/PI3K/MAPKERK.

Mohamed A. Fouda; Hanan M. El-Gowelli; Sahar M. El-Gowilly; Mahmoud M. El-Mas

We have previously reported that estrogen (E2) exacerbates the depressant effect of chronic nicotine on arterial baroreceptor activity in female rats. Here, we tested the hypothesis that this nicotine effect is modulated by nitric oxide synthase (NOS) and/or heme oxygenase (HO) and their downstream soluble guanylate cyclase (sGC)/phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinases (MAPKs) signaling. We investigated the effects of (i) inhibition or facilitation of NOS or HO on the interaction of nicotine (2mg/kg/day i.p., 2 weeks) with reflex bradycardic responses to phenylephrine in ovariectomized (OVX) rats treated with E2 or vehicle, and (ii) central pharmacologic inhibition of sGC, PI3K, or MAPKs on the interaction. The data showed that the attenuation by nicotine of reflex bradycardia in OVXE2 rats was abolished after treatment with hemin (HO inducer) or l-arginine (NOS substrate). The hemin or l-arginine effect disappeared after inhibition of NOS (Nω-Nitro-l-arginine methyl ester hydrochloride, L-NAME) and HO (zinc protoporphyrin IX, ZnPP), respectively, denoting the interaction between the two enzymatic pathways. E2-receptor blockade (ICI 182,780) reduced baroreflexes in OVXE2 rats but had no effect on baroreflex improvement induced by hemin or l-arginine. Moreover, baroreflex enhancement by hemin was eliminated following intracisternal (i.c.) administration of wortmannin, ODQ, or PD98059 (inhibitors of PI3K, sGC, and extracellular signal-regulated kinases, MAPKERK, respectively). In contrast, the hemin effect was preserved after inhibition of MAPKp38 (SB203580) or MAPKJNK (SP600125). Overall, NOS/HO interruption underlies baroreflex dysfunction caused by nicotine in female rats and the facilitation of NOS/HO-coupled sGC/PI3K/MAPKERK signaling might rectify the nicotine effect.


European Journal of Pharmacology | 2018

Gonadal hormone receptors underlie the resistance of female rats to inflammatory and cardiovascular complications of endotoxemia

Mohammed A. El-Lakany; Mohamed A. Fouda; Hanan M. El-Gowelli; Sahar M. El-Gowilly; Mahmoud M. El-Mas

Abstract The male gender is more vulnerable to immunological complications of sepsis. Here, we tested the hypotheses that female rats are protected against endotoxemia‐evoked hypotension and cardiac autonomic dysfunction, and that gonadal hormone receptors account for such protection. Changes in blood pressure, heart rate, and cardiac sympathovagal balance caused by i.v. lipopolysaccharide (LPS) were determined. In male rats, LPS elevated serum TNF&agr; together with falls in blood pressure and rises in heart rate. The spectral index of cardiac sympathovagal balance (low‐frequency/high‐frequency ratio, LF/HF) was reduced by LPS, suggesting an enhanced parasympathetic dominance. Remarkably, none of these LPS effects was evident in female rats. We also report that pretreatment of female rats with fulvestrant (nonselective estrogen receptor blocker), PHTPP (estrogen receptor &bgr; blocker), or mifepristone (progesterone receptor blocker) uncovered clear inflammatory (increased serum TNF&agr;), hypotensive and tachycardic responses to LPS. However, these female rats, contrary to their male counterparts, exhibited increases in LF/HF ratio. On the other hand, LPS failed to modify inflammatory or cardiovascular states in rats pretreated with MPP (estrogen receptor &agr; blocker). In females treated with formestane (aromatase inhibitor), LPS increased LF/HF ratio but had no effect on blood pressure. In male rats, the hypotensive and cardiac autonomic effects of LPS were (i) eliminated after treatment with estrogen, and (ii) intensified and inhibited, respectively, in flutamide (androgen receptor blocker)‐pretreated rats. These findings highlight important roles for female gonadal hormones and functional estrogen receptor &bgr; and progesterone receptors in offsetting inflammatory and cardiovascular derangements caused by endotoxemia in female rats.


Journal of Pharmacology and Experimental Therapeutics | 2018

Restoration of rostral ventrolateral medulla cystathionine-γ lyase activity underlies moxonidine-evoked neuroprotection and sympathoinhibition in diabetic rats

Mohamed A. Fouda; Shaimaa S. El-Sayed; Abdel A. Abdel-Rahman

We recently demonstrated a fundamental role for cystathionine-γ lyase (CSE)–derived hydrogen sulfide (H2S) in the cardioprotective effect of the centrally acting drug moxonidine in diabetic rats. Whether a downregulated CSE/H2S system in the rostral ventrolateral medulla (RVLM) underlies neuronal oxidative stress and sympathoexcitation in diabetes has not been investigated. Along with addressing this question, we tested the hypothesis that moxonidine prevents the diabetes-evoked neurochemical effects by restoring CSE/H2S function within its major site of action, the RVLM. Ex vivo studies were performed on RVLM tissues of streptozotocin (55 mg/kg, i.p.) diabetic rats treated daily for 3 weeks with moxonidine (2 or 6 mg/kg; gavage), H2S donor sodium hydrosulfide (NaHS) (3.4 mg/kg, i.p.), CSE inhibitor DL-propargylglycine (DLP) (37.5 mg/kg, i.p.), a combination of DLP with moxonidine, or their vehicle. Moxonidine alleviated RVLM oxidative stress, neuronal injury, and increased tyrosine hydroxylase immunoreactivity (sympathoexcitation) by restoring CSE expression/activity as well as heme oxygenase-1 (HO-1) expression. A pivotal role for H2S in moxonidine-evoked neuroprotection is supported by the following: 1) NaHS replicated the moxonidine-evoked neuroprotection, and the restoration of RVLM HO-1 expression in diabetic rats; and 2) DLP abolished moxonidine-evoked neuroprotection in diabetic rats, and caused RVLM neurotoxicity, reminiscent of a diabetes-evoked neuronal phenotype, in healthy rats. These findings suggest a novel role for RVLM CSE/H2S/HO-1 in moxonidine-evoked neuroprotection and sympathoinhibition, and as a therapeutic target for developing new drugs for alleviating diabetes-evoked RVLM neurotoxicity and cardiovascular anomalies.


Pharmacological Reports | 2017

Hemin blunts the depressant effect of chronic nicotine on reflex tachycardia via activation of central NOS/PI3K pathway in female rats

Mohamed A. Fouda; Hanan M. El-Gowelli; Sahar M. El-Gowilly; Mahmoud M. El-Mas

BACKGROUND Chronic nicotine administration impairs reflex chronotropic responses that follow arterial baroreceptor unloading in female rats with repleted, but not depleted (ovariectomized, OVX), estrogen (E2). This study investigated whether products of nitric oxide synthase (NOS) and/or heme oxygenase (HO) and related soluble guanylate cyclase (sGC)/phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinases (MAPKs) signaling mediate the E2-sensitive depressant effect of nicotine on reflex tachycardia. METHODS Baroreflex curves relating reflex tachycardic responses to falls in blood pressure (BP) generated by sodium nitroprusside (SNP) were established in conscious female rats and slopes of the curves were taken as measures of baroreflex sensitivity (BRS). RESULTS Nicotine (2 mg/kg/day ip, 14 days) reduced BRS in OVX rats treated with E2 but not vehicle. Baroreceptor dysfunction in nicotine-treated OVXE2 rats was abolished after iv treatment with hemin (HO inducer) but not l-arginine (NOS substrate) denoting the importance of reduced availability of carbon monoxide, but not NO, in the nicotine effect. The favorable BRS effect of hemin was abolished after intracisternal (ic) administration of L-NAME (NOS inhibitor) or wortmannin (PI3 K inhibitor). Central circuits of MAPKs do not seem to contribute to the baroreflex facilitatory effect of hemin because the latter was preserved after central inhibition of MAPKERK (PD98059), MAPKp38 (SB203580) or MAPKJNK (SP600125). Likewise, sGC inhibition (ODQ) or E2 receptor blockade (ICI182780) failed to alter the hemin effect. CONCLUSION The activation of central NOS/PI3K signaling following HO upregulation improves the E2-dependent depressant effect of nicotine on reflex tachycardia.


The FASEB Journal | 2014

The interplay between heme oxygenase and nitric oxide synthase and downstream PI3K/sGC/ERK signaling ameliorates the estrogen-dependent depressant effect of chronic nicotine on reflex bradycardia (837.2)

Mahmoud M. El-Mas; Hanan M. El-Gowelli; Mohamed A. Fouda; Sahar M. El-Gowilly

Collaboration


Dive into the Mohamed A. Fouda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge