Mohamed A. Mezour
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohamed A. Mezour.
ACS Nano | 2014
Mohamed A. Mezour; Iryna I. Perepichka; Jun Zhu; R. Bruce Lennox; Dmitrii F. Perepichka
Lamellar patterns resulting from the adsorption of p-dialkoxybenzene derivatives on HOPG have been investigated as molecular templates for directing the assembly of thiol-capped gold nanoparticles (AuNP). STM characterization at the liquid-solid interface reveals the periodic arrangement of AuNP on top of the self-assembled molecular network (SAMN), spanning hundreds of nanometers. The resulting superlattices are notably different from the close-packed structures formed by spherical nanoparticles during evaporative drying. The templating effect is based on van der Waals interactions of the alkyl chains of the SAMN and AuNP, and the assembly efficiency is greatest when these chains are of similar length.
Acta Biomaterialia | 2017
Mohamed-Nur Abdallah; Simon D. Tran; Ghada Abughanam; Marco Laurenti; David Zuanazzi; Mohamed A. Mezour; Yizhi Xiao; Marta Cerruti; Walter L. Siqueira; Faleh Tamimi
Cells interact with biomaterials indirectly through extracellular matrix (ECM) proteins adsorbed onto their surface. Accordingly, it could be hypothesized that the surface proteomic signature of a biomaterial might determine its interaction with cells. Here, we present a surface proteomic approach to test this hypothesis in the specific case of biomaterial-epithelial cell interactions. In particular, we determined the surface proteomic signature of different biomaterials exposed to the ECM of epithelial cells (basal lamina). We revealed that the biomaterial surface chemistry determines the surface proteomic profile, and subsequently the interaction with epithelial cells. In addition, we found that biomaterials with surface chemistries closer to that of percutaneous tissues, such as aminated PMMA and aminated PDLLA, promoted higher selective adsorption of key basal lamina proteins (laminins, nidogen-1) and subsequently improved their interactions with epithelial cells. These findings suggest that mimicking the surface chemistry of natural percutaneous tissues can improve biomaterial-epithelial integration, and thus provide a rationale for the design of improved biomaterial surfaces for skin regeneration and percutaneous medical devices. STATEMENT OF SIGNIFICANCE Failure of most biomaterials originates from the inability to predict and control the influence of their surface properties on biological phenomena, particularly protein adsorption, and cellular behaviour, which subsequently results in unfavourable host response. Here, we introduce a surface-proteomic screening approach using a label-free mass spectrometry technique to decipher the adsorption profile of extracellular matrix (ECM) proteins on different biomaterials, and correlate it with cellular behaviour. We demonstrated that the way a biomaterial selectively interacts with specific ECM proteins of a given tissue seems to determine the interactions between the cells of that tissue and biomaterials. Accordingly, this approach can potentially revolutionize the screening methods for investigating the protein-cell-biomaterial interactions and pave the way for deeper understanding of these interactions.
Angewandte Chemie | 2016
Yong‐Guang Jia; Cédric Malveau; Mohamed A. Mezour; Dmitrii F. Perepichka; X. X. Zhu
A molecular necklace of polypseudorotaxanes was prepared by threading β-cyclodextrins (β-CD) onto biodegradable and thermoresponsive polyurethanes derived from bile acids. These polyurethanes were synthesized via a simple step condensation of bile acid-based dicarbonate with poly(ethylene glycol)-diamine. The β-CD rings slide onto the poly(ethylene glycol) segments and selectively recognize the bile acid units of the polyurethane chains, whereas the poly(ethylene glycol) segments remain crystalline with a lower crystallinity. This bio-compound-derived molecular necklace can be visualized by scanning tunneling microscopy. The polypseudorotaxanes show thermosensitivity in water and the phase transition temperature may be fine-tuned by varying the molar ratios of β-CD to the bile acid units. Such an interesting necklace model of polypseudorotaxane constructed from natural compounds may lead to the further exploration of their applications, such as as an enzyme model, due to their biological nature.
New Journal of Chemistry | 2017
Siting Ni; Jun Zhu; Mohamed A. Mezour; R. Bruce Lennox
An efficient method for the covalent binding of single wall carbon nanotubes (SWCNT) to gold nanorods (AuNR), based on an inverse-electron-demand Diels–Alder (IEDDA) reaction, is established and discussed. This thermally-mild preparation method allows the potential introduction of thermally-labile species to Au–CNT conjugates. This IEDDA approach provides controllable, clean, and facile access to polymer-free organic-soluble AuNR–SWCNT conjugates for potential applications in catalysis, sensing, and electronic devices.
Journal of Biomedical Materials Research Part B | 2018
Ashwaq Ali Al-Hashedi; Marco Laurenti; Mohamed A. Mezour; Tayebeh Basiri; Heithem Touazine; Mohamed Jahazi; Faleh Tamimi
Oral hygiene and regular maintenance are crucial for preserving good peri-implant health. However, available prophylaxis products and toothpastes, which are optimized for cleaning teeth, tend to contaminate and abrade implant surfaces due to their organic components and silica microparticles, respectively. This study aims to develop an organic-free implant-paste based on two-dimensional nanocrystalline magnesium phosphate gel and hydrated silica nanoparticles (20-30% w/w) for cleaning oral biofilm on titanium dental implants. The surface chemistry, morphology, and bacterial load of contaminated Ti disks before and after decontamination using prophylaxis brushing with toothpaste and implant-paste were characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, and fluorescence spectroscopy. Both commercial toothpastes and implant-paste remove bacteria, however, only implant-paste protects Ti metal from abrasion and removes organic contaminants. XPS showed a significant decrease of carbon contamination from 73% ± 2 to 20% ± 2 after mechanical brushing with implant-paste compared to 41% ± 11 when brushing with commercial toothpastes (p < 0.05). Fluorescence microscopy revealed that bacteria load on biofilm contaminated Ti (44 × 103 ± 27 × 103 /µm2 ) was significantly reduced with the implant-paste to 2 × 103 ± 1 × 102 /µm2 and with a commercial toothpaste to 2.9 × 103 ± 7·102 /µm2 . This decay is relatively higher than the removal achieved using rotary prophylaxis brush alone (5 × 103 ± 1 × 103 /µm2 , p < 0.05). Accordingly, this novel implant-paste shows a great promise as an efficient decontamination approach.
Acta Biomaterialia | 2018
Mohamed-Nur Abdallah; Ghada Abughanam; Simon D. Tran; Zeeshan Sheikh; Mohamed A. Mezour; Tayebeh Basiri; Yizhi Xiao; Marta Cerruti; Walter L. Siqueira; Faleh Tamimi
Titanium (Ti) dental implants are susceptible to bacterial infections and failure due to lack of proper epithelial seal. Epithelial cells establish a strong epithelial seal around natural teeth by the deposition of basal lamina (BL) proteins that adsorb on the tooth surface. This seal can even be re-established onto cementum or dentin following injury or periodontal therapy. However, it is unclear how tooth surfaces promote this cell attachment and protein adsorption. Understanding the interactions between BL proteins and epithelial cells with dentin and Ti will facilitate the development of implant surfaces that promote the formation of an epithelial seal and improve the success of periodontal therapy and wound healing on natural teeth. To study these interactions, we used a surface proteomic approach to decipher the adsorption profile of BL proteins onto Ti and dentin, and correlated these adsorption profiles with in vitro interactions of human gingival fibroblasts and epithelial cells. Results showed that dentin adsorbed higher amounts of key BL proteins, particularly laminin and nidogen-1, and promoted more favorable interactions with epithelial cells than Ti. Next, dentin specimens were deproteinized or partially demineralized to determine if its mineral or protein component was responsible for BL adsorption and cell attachment. Deproteinized (mineral-rich) and partially demineralized (protein-rich) dentin specimens revealed BL proteins (i.e. laminin and nidogen-1) and epithelial cells interact preferentially with dentinal proteins rather than dentin mineral. These findings suggest that, unlike Ti, dentin and, in particular, dentinal proteins have a selective affinity to BL proteins that enhance epithelial cell attachment. STATEMENT OF SIGNIFICANCE It is remains unclear why natural teeth, unlike titanium dental implants, promote the formation of an epithelial seal that protects them against the external environment. This study used a surface screening approach to analyze the adsorption of proteins produced by epithelial tissues onto tooth-dentin and titanium surfaces, and correlate it with the behaviour of cells. This study shows that tooth-dentin, in particular its proteins, has a higher selective affinity to certain adhesion proteins, and subsequently allows more favourable interactions with epithelial cells than titanium. This knowledge could help in developing new approaches for re-establishing and maintaining the epithelial seal around teeth, and could pave the way for developing implants with surfaces that allow the formation of a true epithelial seal.
Acta Biomaterialia | 2018
Ammar A. Alsheghri; Omar Alageel; Mohamed A. Mezour; Binhan Sun; Stephen Yue; Faleh Tamimi; Jun Song
Biomedical and dental prostheses combining polymers with metals often suffer failure at the interface. The weak chemical bond between these two dissimilar materials can cause debonding and mechanical failure. This manuscript introduces a new mechanical interlocking technique to strengthen metal/polymer interfaces through optimized additively manufactured features on the metal surface. To reach an optimized design of interlocking features, we started with the bio-mimetic stress-induced material transformation (SMT) optimization method. The considered polymer and metal materials were cold-cured Poly(methyl methacrylate) (PMMA) and laser-sintered Cobalt-Chromium (Co-Cr), respectively. Optimal dimensions of the bio-inspired interlocking features were then determined by mesh adaptive direct search (MADS) algorithm combined with finite element analysis (FEA) and tensile experiments such that they provide the maximum interfacial tensile strength and stiffness while minimizing the stress in PMMA and the displacement of PMMA at the Co-Cr/PMMA interface. The SMT optimization process suggested a Y-shape as a more favorable design, which was similar to mangrove tree roots. Experiments confirmed that our optimized interlocking features increased the strength of the Co-Cr/PMMA interface from 2.3 MPa (flat interface) to 34.4 ± 1 MPa, which constitutes 85% of the tensile failure strength of PMMA (40.2 ± 1 MPa). STATEMENT OF SIGNIFICANCE: The objective of this study was to improve metal/polymer interfacial strength in dental and orthopedic prostheses. This was achieved by additive manufacturing of optimized interlocking features on metallic surfaces using laser-sintering. The interlocking design of the features, which was a Y-shape similar to the roots of mangrove trees, was inspired by a bio-memetic optimization algorithm. This interlocking design lowered the PMMA displacement at the Co-Cr/PMMA interface by 70%, enhanced the interfacial strength by more than 12%, and increased the stiffness by 18% compared with a conventional bead design, meanwhile no significant difference was found in the toughness of both designs.
Chemistry of Materials | 2014
Jun Zhu; Jonathan Hiltz; Mohamed A. Mezour; Vadim Bernard-Gauthier; R. Bruce Lennox; Ralf Schirrmacher
Chemical Communications | 2014
Iryna I. Perepichka; Mohamed A. Mezour; Dmitrii F. Perepichka; R. Bruce Lennox
Nanoscale | 2016
Mohamed A. Mezour; Rachelle M. Choueiri; Olena Lukoyanova; R. Bruce Lennox; Dmitrii F. Perepichka