Mohamed Abdouh
Hôpital Maisonneuve-Rosemont
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohamed Abdouh.
The Journal of Neuroscience | 2009
Mohamed Abdouh; Sabrina Facchino; Wassim Chatoo; Vijayabalan Balasingam; Jose A. G. Ferreira; Gilbert Bernier
Glioblastoma multiforme (GBM) is one of the most common and aggressive types of brain tumors. In GBM, a subpopulation of CD133-positive cancer initiating cells displays stem cell characteristics. The Polycomb group (PcG) and oncogene BMI1 is part of the Polycomb repressive complex 1 (PRC1) that regulates gene expression by modifying chromatin organization. Here we show that BMI1 is expressed in human GBM tumors and highly enriched in CD133-positive cells. Stable BMI1 knockdown using short hairpin RNA-expressing lentiviruses resulted in inhibition of clonogenic potential in vitro and of brain tumor formation in vivo. Cell biology studies support the notion that BMI1 prevents CD133-positive cell apoptosis and/or differentiation into neurons and astrocytes, depending on the cellular context. Gene expression analyses suggest that BMI1 represses alternate tumor suppressor pathways that attempt to compensate for INK4A/ARF/P53 deletion and PI(3)K/AKT hyperactivity. Inhibition of EZH2, the main component of the PRC2, also impaired GBM tumor growth. Our results reveal that PcG proteins are involved in GBM tumor growth and required to sustain cancer initiating stem cell renewal.
The Journal of Neuroscience | 2010
Sabrina Facchino; Mohamed Abdouh; Wassim Chatoo; Gilbert Bernier
Glioblastoma multiforme (GBM) is an aggressive brain tumor that is resistant to all known therapies. Within these tumors, a CD133-positive cancer-initiating neural stem cell (NSC) population was shown to be resistant to gamma radiation through preferential activation of the DNA double-strand break (DSB) response machinery, including the ataxia-telangiectasia-mutated (ATM) kinase. The polycomb group protein BMI1 is enriched in CD133-positive GBM cells and required for their self-renewal in an INK4A/ARF-independent manner through transcriptional repression of alternate tumor suppressor pathways. We report here that BMI1 copurifies with DNA DSB response and nonhomologous end joining (NHEJ) repair proteins in GBM cells. BMI1 was enriched at the chromatin after irradiation and colocalized and copurified with ATM and the histone γH2AX. BMI1 also preferentially copurified with NHEJ proteins DNA-PK, PARP-1, hnRNP U, and histone H1 in CD133-positive GBM cells. BMI1 deficiency in GBM cells severely impaired DNA DSB response, resulting in increased sensitivity to radiation. In turn, BMI1 overexpression in normal NSCs enhanced ATM recruitment to the chromatin, the rate of γH2AX foci resolution, and resistance to radiation. BMI1 thus displays a previously uncharacterized function in controlling DNA DSB response and repair. Pharmacological inhibition of BMI1 combined with radiation therapy may provide an effective mean to target GBM stem cells.
Cancers | 2011
Sabrina Facchino; Mohamed Abdouh; Gilbert Bernier
Glioblastoma multiforme (GBM), an aggressive brain tumor of astrocytic/neural stem cell origin, represents one of the most incurable cancers. GBM tumors are highly heterogeneous. However, most tumors contain a subpopulation of cells that display neural stem cell characteristics in vitro and that can generate a new brain tumor upon transplantation in mice. Hence, previously identified molecular pathways regulating neural stem cell biology were found to represent the cornerstone of GBM stem cell self-renewal mechanism. GBM tumors are also notorious for their resistance to radiation therapy. Notably, GBM “cancer stem cells” were also found to be responsible for this radioresistance. Herein, we will analyze the data supporting or not the cancer stem cell model in GBM, overview the current knowledge regarding GBM stem cell self-renewal and radioresistance molecular mechanisms, and discuss the potential therapeutic application of these findings.
PLOS ONE | 2012
Mohamed Abdouh; Wassim Chatoo; Jida El Hajjar; Jocelyn David; Jose A. G. Ferreira; Gilbert Bernier
Aging increases the risk to develop several neurodegenerative diseases, although the underlying mechanisms are poorly understood. Inactivation of the Polycomb group gene Bmi1 in mice results in growth retardation, cerebellar degeneration, and development of a premature aging-like phenotype. This progeroid phenotype is characterized by formation of lens cataracts, apoptosis of cortical neurons, and increase of reactive oxygen species (ROS) concentrations, owing to p53-mediated repression of antioxidant response (AOR) genes. Herein we report that Bmi1 expression progressively declines in the neurons of aging mouse and human brains. In old brains, p53 accumulates at the promoter of AOR genes, correlating with a repressed chromatin state, down-regulation of AOR genes, and increased oxidative damages to lipids and DNA. Comparative gene expression analysis further revealed that aging brains display an up-regulation of the senescence-associated genes IL-6, p19Arf and p16Ink4a, along with the pro-apoptotic gene Noxa, as seen in Bmi1-null mice. Increasing Bmi1 expression in cortical neurons conferred robust protection against DNA damage-induced cell death or mitochondrial poisoning, and resulted in suppression of ROS through activation of AOR genes. These observations unveil that Bmi1 genetic deficiency recapitulates aspects of physiological brain aging and that Bmi1 over-expression is a potential therapeutic modality against neurodegeneration.
Antioxidants & Redox Signaling | 2011
Wassim Chatoo; Mohamed Abdouh; Gilbert Bernier
Recent advances in delineating the biological functions of p53 had shed the light on its key role in the multifacets of cellular homeostasis. After its activation, via DNA damage, oxidative stress, or aberrant expression of oncogenes, p53 transduces its classical effect through several mechanisms comprising activation of the DNA repair machinery, cell cycle arrest, and initiation of apoptosis or senescence. In the mammalian brain, p53 plays critical functions in normal development, tumor suppression, neurodegenerative diseases, and aging. Herein, we focus on the constitutive pro-oxidant activity of p53 in neurons and discuss the potential implication of this finding in the context of neurodegenerative diseases and normal brain aging.
Stem Cells | 2010
Wassim Chatoo; Mohamed Abdouh; Robert-Hugues Duparc; Gilbert Bernier
The developing mammalian retina is generated by the proliferation and differentiation of multipotent retinal progenitor cells (RPCs) giving rise to neuronal and glial lineages. Whether an immature progenitor/stem cell subpopulation is present in the developing mammalian retina remains undefined. Deficiency in the polycomb group gene Bmi1 results in reduced proliferation and postnatal depletion of neural and hematopoietic stem cells. Here, we show that Bmi1 is required for the self‐renewal of most immature RPCs and for postnatal retinal development. In the embryo, Bmi1 is highly enriched in a rare stage‐specific embryonic antigen‐1‐positive RPC subpopulation expressing the stem cell markers Sox2, Lhx2, and Musashi. Gain‐of‐function experiments revealed that Bmi1 overexpression could convert RPCs having limited proliferation capacity into RPCs showing extensive proliferation and multiple differentiation capacities over time. At all developmental stages analyzed using the neurosphere assay, Bmi1 deficiency resulted in reduced proliferation and self‐renewal of most immature RPCs. Reduced RPCs proliferation was also observed in the peripheral retina of Bmi1−/− fetus and newborn mice. The biological impact of these developmental anomalies was revealed by the reduced retinal diameter of Bmi1‐deficient pups. P19Arf and p16Ink4a were upregulated in vivo and in vitro and coinactivation of p53, which lies downstream of p19Arf, partially restored Bmi1‐deficient RPCs self‐renewal phenotype. Bmi1 thus distinguishes immature RPCs from the main RPC population and is required for normal retinal development. STEM CELLS 2010;28:1412–1423
Journal of Biological Chemistry | 2016
Mohamed Abdouh; Roy Hanna; Jida El Hajjar; Anthony Flamier; Gilbert Bernier
Background: BMI1 silences the expression of genes located at the facultative heterochromatin. Results: BMI1 is abundant at repetitive genomic regions, including the pericentromeric heterochromatin (PCH), where it is required for compaction and silencing. Conclusion: BMI1 is essential for PCH formation. Significance: BMI1 function at PCH is important to understand how BMI1 regulates genomic stability. The polycomb repressive complex 1 (PRC1), containing the core BMI1 and RING1A/B proteins, mono-ubiquitinylates histone H2A (H2Aub) and is associated with silenced developmental genes at facultative heterochromatin. It is, however, assumed that the PRC1 is excluded from constitutive heterochromatin in somatic cells based on work performed on mouse embryonic stem cells and oocytes. We show here that BMI1 is required for constitutive heterochromatin formation and silencing in human and mouse somatic cells. BMI1 was highly enriched at intergenic and pericentric heterochromatin, co-immunoprecipitated with the architectural heterochromatin proteins HP1, DEK1, and ATRx, and was required for their localization. In contrast, BRCA1 localization was BMI1-independent and partially redundant with that of BMI1 for H2Aub deposition, constitutive heterochromatin formation, and silencing. These observations suggest a dynamic and developmentally regulated model of PRC1 occupancy at constitutive heterochromatin, and where BMI1 function in somatic cells is to stabilize the repetitive genome.
Development | 2016
Andrea Barabino; Vicky Plamondon; Mohamed Abdouh; Wassim Chatoo; Anthony Flamier; Roy Hanna; Shufeng Zhou; Noboru Motoyama; Marc Hébert; Joëlle Lavoie; Gilbert Bernier
ABSTRACT Retinal development occurs through the sequential but overlapping generation of six types of neuronal cells and one glial cell type. Of these, rod and cone photoreceptors represent the functional unit of light detection and phototransduction and are frequently affected in retinal degenerative diseases. During mouse development, the Polycomb group protein Bmi1 is expressed in immature retinal progenitors and differentiated retinal neurons, including cones. We show here that Bmi1 is required to prevent post natal degeneration of cone photoreceptors and bipolar neurons and that inactivation of Chk2 or p53 could improve but not overcome cone degeneration in Bmi1−/− mice. The retinal phenotype of Bmi1−/− mice was also characterized by loss of heterochromatin, activation of tandem repeats, oxidative stress and Rip3-associated necroptosis. In the human retina, BMI1 was preferentially expressed in cones at heterochromatic foci. BMI1 inactivation in human embryonic stem cells was compatible with retinal induction but impaired cone terminal differentiation. Despite this developmental arrest, BMI1-deficient cones recapitulated several anomalies observed in Bmi1−/− photoreceptors, such as loss of heterochromatin, activation of tandem repeats and induction of p53, revealing partly conserved biological functions between mouse and man. Summary: Bmi1 is required to prevent postnatal degeneration of cone photoreceptors and bipolar neurons, while BMI1 inactivation in human embryonic stem cells impairs cone terminal differentiation.
Cell Reports | 2018
Anthony Flamier; Jida El Hajjar; James Adjaye; Karl J.L. Fernandes; Mohamed Abdouh; Gilbert Bernier
Late-onset sporadic Alzheimers disease (AD) is the most prevalent form of dementia, but its origin remains poorly understood. The Bmi1/Ring1 protein complex maintains transcriptional repression of developmental genes through histone H2A mono-ubiquitination, and Bmi1 deficiency in mice results in growth retardation, progeria, and neurodegeneration. Here, we demonstrate that BMI1 is silenced in AD brains, but not in those with early-onset familial AD, frontotemporal dementia, or Lewy body dementia. BMI1 expression was also reduced in cortical neurons from AD patient-derived induced pluripotent stem cells but not in neurons overexpressing mutant APP and PSEN1. BMI1 knockout in human post-mitotic neurons resulted in amyloid beta peptide secretion and deposition, p-Tau accumulation, and neurodegeneration. Mechanistically, BMI1 was required to repress microtubule associated protein tau (MAPT) transcription and prevent GSK3beta and p53 stabilization, which otherwise resulted in neurodegeneration. Restoration of BMI1 activity through genetic or pharmaceutical approaches could represent a therapeutic strategy against AD.
The Journal of Neuroscience | 2009
Wassim Chatoo; Mohamed Abdouh; Jocelyn David; Marie-Pier Champagne; Jose A. G. Ferreira; Francis Rodier; Gilbert Bernier