Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed Abouelhoda is active.

Publication


Featured researches published by Mohamed Abouelhoda.


Arthritis & Rheumatism | 2015

Association of a Mutation in LACC1 With a Monogenic Form of Systemic Juvenile Idiopathic Arthritis

Salma M. Wakil; Dorota Monies; Mohamed Abouelhoda; Nada A. Al-Tassan; Haya Al-Dusery; Ewa A. Naim; Banan Al-Younes; Jameela Shinwari; Futwan Al-Mohanna; Brian F. Meyer; Sulaiman M. Al-Mayouf

The pathologic basis of systemic juvenile idiopathic arthritis (JIA) is a subject of some controversy, with evidence for both autoimmune and autoinflammatory etiologies. Several monogenic autoinflammatory disorders have been described, but thus far, systemic JIA has only been attributed to a mutation of MEFV in rare cases and has been weakly associated with the HLA class II locus. This study was undertaken to identify the cause of an autosomal‐recessive form of systemic JIA.


Molecular Psychiatry | 2017

Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield

Shamsa Anazi; Sateesh Maddirevula; Eissa Faqeih; Haifa Alsedairy; F. Alzahrani; Hanan E. Shamseldin; Nisha A. Patel; Mais Hashem; Niema Ibrahim; Firdous Abdulwahab; Nour Ewida; Hessa S. Alsaif; H Al sharif; W Alamoudi; Amal Y. Kentab; Fahad A. Bashiri; M Alnaser; Ali H. Alwadei; Majid Alfadhel; Wafaa Eyaid; Amal Hashem; A Al Asmari; Marwa Saleh; Abdulaziz Alsaman; K A Alhasan; M Alsughayir; M Al Shammari; Adel Mahmoud; Zuhair Al-Hassnan; Muneera Al-Husain

Intellectual disability (ID) is a measurable phenotypic consequence of genetic and environmental factors. In this study, we prospectively assessed the diagnostic yield of genomic tools (molecular karyotyping, multi-gene panel and exome sequencing) in a cohort of 337 ID subjects as a first-tier test and compared it with a standard clinical evaluation performed in parallel. Standard clinical evaluation suggested a diagnosis in 16% of cases (54/337) but only 70% of these (38/54) were subsequently confirmed. On the other hand, the genomic approach revealed a likely diagnosis in 58% (n=196). These included copy number variants in 14% (n=54, 15% are novel), and point mutations revealed by multi-gene panel and exome sequencing in the remaining 43% (1% were found to have Fragile-X). The identified point mutations were mostly recessive (n=117, 81%), consistent with the high consanguinity of the study cohort, but also X-linked (n=8, 6%) and de novo dominant (n=19, 13%). When applied directly on all cases with negative molecular karyotyping, the diagnostic yield of exome sequencing was 60% (77/129). Exome sequencing also identified likely pathogenic variants in three novel candidate genes (DENND5A, NEMF and DNHD1) each of which harbored independent homozygous mutations in patients with overlapping phenotypes. In addition, exome sequencing revealed de novo and recessive variants in 32 genes (MAMDC2, TUBAL3, CPNE6, KLHL24, USP2, PIP5K1A, UBE4A, TP53TG5, ATOH1, C16ORF90, SLC39A14, TRERF1, RGL1, CDH11, SYDE2, HIRA, FEZF2, PROCA1, PIANP, PLK2, QRFPR, AP3B2, NUDT2, UFC1, BTN3A2, TADA1, ARFGEF3, FAM160B1, ZMYM5, SLC45A1, ARHGAP33 and CAPS2), which we highlight as potential candidates on the basis of several lines of evidence, and one of these genes (SLC39A14) was biallelically inactivated in a potentially treatable form of hypermanganesemia and neurodegeneration. Finally, likely causal variants in previously published candidate genes were identified (ASTN1, HELZ, THOC6, WDR45B, ADRA2B and CLIP1), thus supporting their involvement in ID pathogenesis. Our results expand the morbid genome of ID and support the adoption of genomics as a first-tier test for individuals with ID.


Genetics in Medicine | 2016

Expanding the clinical, allelic, and locus heterogeneity of retinal dystrophies

Nisha A. Patel; Mohammed A. Aldahmesh; Hisham Alkuraya; Shamsa Anazi; Hadeel Alsharif; Arif O. Khan; Asma Sunker; Al-Mohsen S; Emad B. Abboud; Nowilaty; Mohammed Al-Owain; Hamad Al-Zaidan; Al-Saud B; Ali Alasmari; Abdel-Salam Gm; Mohamed Abouelhoda; Firdous Abdulwahab; Niema Ibrahim; Ewa A. Naim; Banan Al-Younes; AlIssa A; Mais Hashem; Olga Buzovetsky; Yong Xiong; Dorota Monies; Nada A. Al-Tassan; Ranad Shaheen; Selwa A.F. Al-Hazzaa; Fowzan S. Alkuraya

Purpose:Retinal dystrophies (RD) are heterogeneous hereditary disorders of the retina that are usually progressive in nature. The aim of this study was to clinically and molecularly characterize a large cohort of RD patients.Methods:We have developed a next-generation sequencing assay that allows known RD genes to be sequenced simultaneously. We also performed mapping studies and exome sequencing on familial and on syndromic RD patients who tested negative on the panel.Results:Our panel identified the likely causal mutation in >60% of the 292 RD families tested. Mapping studies on all 162 familial RD patients who tested negative on the panel identified two novel disease loci on Chr2:25,550,180-28,794,007 and Chr16:59,225,000-72,511,000. Whole-exome sequencing revealed the likely candidate as AGBL5 and CDH16, respectively. We also performed exome sequencing on negative syndromic RD cases and identified a novel homozygous truncating mutation in GNS in a family with the novel combination of mucopolysaccharidosis and RD. Moreover, we identified a homozygous truncating mutation in DNAJC17 in a family with an apparently novel syndrome of retinitis pigmentosa and hypogammaglobulinemia.Conclusion:Our study expands the clinical and allelic spectrum of known RD genes, and reveals AGBL5, CDH16, and DNAJC17 as novel disease candidates.Genet Med 18 6, 554–562.


The Journal of Allergy and Clinical Immunology | 2016

Unbiased targeted next-generation sequencing molecular approach for primary immunodeficiency diseases

Hamoud Al-Mousa; Mohamed Abouelhoda; Dorota Monies; Nada A. Al-Tassan; A. Al-Ghonaium; Bandar Al-Saud; Hasan Al-Dhekri; Rand Arnaout; Saleh Al-Muhsen; Nazema Ades; Sahar Elshorbagi; Sulaiman Al Gazlan; Farrukh Sheikh; Majed Dasouki; Lina El-Baik; Tanzeil Elamin; Amal Jaber; Omnia Kheir; Mohamed El-Kalioby; Shazia Subhani; Eman Al Idrissi; Mofareh AlZahrani; Maryam Alhelale; Noukha Alnader; Afaf Al-Otaibi; Rana Kattan; Khalid Al Abdelrahman; Muna M. Al Breacan; Faisal S. Bin Humaid; Salma M. Wakil

BACKGROUND Molecular genetics techniques are an essential diagnostic tool for primary immunodeficiency diseases (PIDs). The use of next-generation sequencing (NGS) provides a comprehensive way of concurrently screening a large number of PID genes. However, its validity and cost-effectiveness require verification. OBJECTIVES We sought to identify and overcome complications associated with the use of NGS in a comprehensive gene panel incorporating 162 PID genes. We aimed to ascertain the specificity, sensitivity, and clinical sensitivity of the gene panel and its utility as a diagnostic tool for PIDs. METHODS A total of 162 PID genes were screened in 261 patients by using the Ion Torrent Proton NGS sequencing platform. Of the 261 patients, 122 had at least 1 known causal mutation at the onset of the study and were used to assess the specificity and sensitivity of the assay. The remaining samples were from unsolved cases that were biased toward more phenotypically and genotypically complicated cases. RESULTS The assay was able to detect the mutation in 117 (96%) of 122 positive control subjects with known causal mutations. For the unsolved cases, our assay resulted in a molecular genetic diagnosis for 35 of 139 patients. Interestingly, most of these cases represented atypical clinical presentations of known PIDs. CONCLUSIONS The targeted NGS PID gene panel is a sensitive and cost-effective diagnostic tool that can be used as a first-line molecular assay in patients with PIDs. The assay is an alternative choice to the complex and costly candidate gene approach, particularly for patients with atypical presentation of known PID genes.


Genome Biology | 2016

Characterizing the morbid genome of ciliopathies

Ranad Shaheen; Katarzyna Szymanska; Basudha Basu; Nisha Patel; Nour Ewida; Eissa Faqeih; Amal Hashem; Nada Derar; Hadeel Alsharif; Mohammed A. Aldahmesh; Anas M. Alazami; Mais Hashem; Niema Ibrahim; Firdous Abdulwahab; Rawda Sonbul; Hisham Alkuraya; Maha Alnemer; Saeed Al Tala; Muneera Al-Husain; Heba Morsy; Mohammed Zain Seidahmed; Neama Meriki; Mohammed Al-Owain; Saad AlShahwan; Brahim Tabarki; Mustafa A. Salih; Ciliopathy WorkingGroup; Tariq Faquih; Mohamed El-Kalioby; Marius Ueffing

BackgroundCiliopathies are clinically diverse disorders of the primary cilium. Remarkable progress has been made in understanding the molecular basis of these genetically heterogeneous conditions; however, our knowledge of their morbid genome, pleiotropy, and variable expressivity remains incomplete.ResultsWe applied genomic approaches on a large patient cohort of 371 affected individuals from 265 families, with phenotypes that span the entire ciliopathy spectrum. Likely causal mutations in previously described ciliopathy genes were identified in 85% (225/265) of the families, adding 32 novel alleles. Consistent with a fully penetrant model for these genes, we found no significant difference in their “mutation load” beyond the causal variants between our ciliopathy cohort and a control non-ciliopathy cohort. Genomic analysis of our cohort further identified mutations in a novel morbid gene TXNDC15, encoding a thiol isomerase, based on independent loss of function mutations in individuals with a consistent ciliopathy phenotype (Meckel-Gruber syndrome) and a functional effect of its deficiency on ciliary signaling. Our study also highlighted seven novel candidate genes (TRAPPC3, EXOC3L2, FAM98C, C17orf61, LRRCC1, NEK4, and CELSR2) some of which have established links to ciliogenesis. Finally, we show that the morbid genome of ciliopathies encompasses many founder mutations, the combined carrier frequency of which accounts for a high disease burden in the study population.ConclusionsOur study increases our understanding of the morbid genome of ciliopathies. We also provide the strongest evidence, to date, in support of the classical Mendelian inheritance of Bardet-Biedl syndrome and other ciliopathies.


Human Molecular Genetics | 2015

Identification of a novel MKS locus defined by TMEM107 mutation

Ranad Shaheen; Agaadir Almoisheer; Eissa Faqeih; Zainab Babay; Dorota Monies; Nada Al Tassan; Mohamed Abouelhoda; Wesam Kurdi; Elham Al Mardawi; Mohamed M.I. Khalil; Mohammed Zain Seidahmed; Maha Alnemer; Nada Alsahan; Samira Sogaty; Amal Alhashem; Ankur Singh; Manisha Goyal; Seema Kapoor; Rana Alomar; Niema Ibrahim; Fowzan S. Alkuraya

Meckel-Gruber syndrome (MKS) is a perinatally lethal disorder characterized by the triad of occipital encephalocele, polydactyly and polycystic kidneys. Typical of other disorders related to defective primary cilium (ciliopathies), MKS is genetically heterogeneous with mutations in a dozen genes to date known to cause the disease. In an ongoing effort to characterize MKS clinically and genetically, we implemented a gene panel and next-generation sequencing approach to identify the causal mutation in 25 MKS families. Of the three families that did not harbor an identifiable causal mutation by this approach, two mapped to a novel disease locus in which whole-exome sequencing revealed the likely causal mutation as a homozygous splicing variant in TMEM107, which we confirm leads to aberrant splicing and nonsense-mediated decay. TMEM107 had been independently identified in two mouse models as a cilia-related protein and mutant mice display typical ciliopathy phenotypes. Our analysis of patient fibroblasts shows marked ciliogenesis defect with an accompanying perturbation of sonic hedgehog signaling, highly concordant with the cellular phenotype in Tmem107 mutants. This study shows that known MKS loci account for the overwhelming majority of MKS cases but additional loci exist including MKS13 caused by TMEM107 mutation.


Genome Biology | 2015

KIAA0556 is a novel ciliary basal body component mutated in Joubert syndrome

Anna A. W. M. Sanders; Erik de Vrieze; Anas M. Alazami; Fatema Alzahrani; Erik B. Malarkey; Nasrin Sorusch; Lars Tebbe; Stefanie Kuhns; Teunis J. P. van Dam; Amal Alhashem; Brahim Tabarki; Qianhao Lu; Nils J. Lambacher; Julie Kennedy; Rachel V. Bowie; Lisette Hetterschijt; Sylvia E. C. van Beersum; Jeroen van Reeuwijk; Karsten Boldt; Hannie Kremer; Robert A. Kesterson; Dorota Monies; Mohamed Abouelhoda; Ronald Roepman; Martijn H. Huynen; Marius Ueffing; Rob B. Russell; Uwe Wolfrum; Bradley K. Yoder; Erwin van Wijk

BackgroundJoubert syndrome (JBTS) and related disorders are defined by cerebellar malformation (molar tooth sign), together with neurological symptoms of variable expressivity. The ciliary basis of Joubert syndrome related disorders frequently extends the phenotype to tissues such as the eye, kidney, skeleton and craniofacial structures.ResultsUsing autozygome and exome analyses, we identified a null mutation in KIAA0556 in a multiplex consanguineous family with hallmark features of mild Joubert syndrome. Patient-derived fibroblasts displayed reduced ciliogenesis potential and abnormally elongated cilia. Investigation of disease pathophysiology revealed that Kiaa0556-/- null mice possess a Joubert syndrome-associated brain-restricted phenotype. Functional studies in Caenorhabditis elegans nematodes and cultured human cells support a conserved ciliary role for KIAA0556 linked to microtubule regulation. First, nematode KIAA0556 is expressed almost exclusively in ciliated cells, and the worm and human KIAA0556 proteins are enriched at the ciliary base. Second, C. elegans KIAA0056 regulates ciliary A-tubule number and genetically interacts with an ARL13B (JBTS8) orthologue to control cilium integrity. Third, human KIAA0556 binds to microtubules in vitro and appears to stabilise microtubule networks when overexpressed. Finally, human KIAA0556 biochemically interacts with ciliary proteins and p60/p80 katanins. The latter form a microtubule-severing enzyme complex that regulates microtubule dynamics as well as ciliary functions.ConclusionsWe have identified KIAA0556 as a novel microtubule-associated ciliary base protein mutated in Joubert syndrome. Consistent with the mild patient phenotype, our nematode, mice and human cell data support the notion that KIAA0556 has a relatively subtle and variable cilia-related function, which we propose is related to microtubule regulation.


Genome Biology | 2016

Revisiting the morbid genome of Mendelian disorders

Mohamed Abouelhoda; Tariq Faquih; Mohamed El-Kalioby; Fowzan S. Alkuraya

BackgroundThe pathogenicity of many Mendelian variants has been challenged by large-scale sequencing efforts. However, many rare and benign “disease mutations” are difficult to analyze due to their rarity. The Saudi Arabian variome is enriched for homozygosity due to inbreeding, a key advantage that can be exploited for the critical examination of previously published variants.ResultsWe collated all “disease-related mutations” listed in the Human Gene Mutation Database (HGMD) and ClinVar, including “variants of uncertain significance” (VOUS). We find that the use of public databases including 1000 Genomes, ExAC, and Kaviar can reclassify many of these variants as likely benign. Our Saudi Human Genome Program (SHGP) can reclassify many variants that are rare in public databases. Furthermore, SGPD allows us to observe many previously reported variants in the homozygous state and our extensive phenotyping of participants makes it possible to demonstrate the lack of phenotype for these variants, thus challenging their pathogenicity despite their rarity. We also find that 18 VOUS BRCA1 and BRCA2 variants that are listed in BRCA Exchange are present at least once in the homozygous state in patients who lack features of Fanconi anemia. Reassuringly, we could reciprocally demonstrate that none of those labeled as “pathogenic” were observed in the homozygous statue in individuals who lack Fanconi phenotype in our database.ConclusionOur study shows the importance of revisiting disease-related databases using public resources as well as of population-specific resources to improve the specificity of the morbid genome of Mendelian diseases in humans.


Human Genetics | 2017

Expanding the genetic heterogeneity of intellectual disability

Shams Anazi; Sateesh Maddirevula; Vincenzo Salpietro; Yasmine T. Asi; Saud Alsahli; Amal Alhashem; Hanan E. Shamseldin; Fatema Alzahrani; Nisha Patel; Niema Ibrahim; Firdous Abdulwahab; Mais Hashem; Nadia Al-Hashmi; Fathiya Al Murshedi; Adila Al Kindy; Ahmad Alshaer; Ahmed Rumayyan; Saeed Al Tala; Wesam Kurdi; Abdulaziz Alsaman; Ali Alasmari; Selina Banu; Tipu Sultan; Mohammed M. Saleh; Hisham Alkuraya; Mustafa A. Salih; Hesham Aldhalaan; Tawfeg Ben-Omran; Fatima Al Musafri; Rehab Ali

Intellectual disability (ID) is a common morbid condition with a wide range of etiologies. The list of monogenic forms of ID has increased rapidly in recent years thanks to the implementation of genomic sequencing techniques. In this study, we describe the phenotypic and genetic findings of 68 families (105 patients) all with novel ID-related variants. In addition to established ID genes, including ones for which we describe unusual mutational mechanism, some of these variants represent the first confirmatory disease–gene links following previous reports (TRAK1, GTF3C3, SPTBN4 and NKX6-2), some of which were based on single families. Furthermore, we describe novel variants in 14 genes that we propose as novel candidates (ANKHD1, ASTN2, ATP13A1, FMO4, MADD, MFSD11, NCKAP1, NFASC, PCDHGA10, PPP1R21, SLC12A2, SLK, STK32C and ZFAT). We highlight MADD and PCDHGA10 as particularly compelling candidates in which we identified biallelic likely deleterious variants in two independent ID families each. We also highlight NCKAP1 as another compelling candidate in a large family with autosomal dominant mild intellectual disability that fully segregates with a heterozygous truncating variant. The candidacy of NCKAP1 is further supported by its biological function, and our demonstration of relevant expression in human brain. Our study expands the locus and allelic heterogeneity of ID and demonstrates the power of positional mapping to reveal unusual mutational mechanisms.


Journal of Medical Genetics | 2016

Genetic spectrum of Saudi Arabian patients with antenatal cystic kidney disease and ciliopathy phenotypes using a targeted renal gene panel

Mohamed Al-Hamed; Wesam Kurdi; Nada Alsahan; Zainab Alabdullah; Rania Abudraz; Maha Tulbah; Maha Alnemer; Rubina Khan; Haya Al-Jurayb; Ahmed Alahmed; Asma I. Tahir; Dania S. Khalil; Noel Edwards; Basma Al Abdulaziz; Faisal S. BinHumaid; Salma Majid; Tariq Faquih; Mohamed El-Kalioby; Mohamed Abouelhoda; Nada A. Al-Tassan; Dorota Monies; Brian F. Meyer; John A. Sayer; Mamdouh Albaqumi

Background Inherited cystic kidney disorders are a common cause of end-stage renal disease. Over 50 ciliopathy genes, which encode proteins that influence the structure and function of the primary cilia, are implicated in cystic kidney disease. Methods To define the phenotype and genotype of cystic kidney disease in fetuses and neonates, we correlated antenatal ultrasound examination and postnatal renal ultrasound examination with targeted exon sequencing, using a renal gene panel. A cohort of 44 families in whom antenatal renal ultrasound scanning findings in affected cases included bilateral cystic kidney disease, echogenic kidneys or enlarged kidneys was investigated. Results In this cohort, disease phenotypes were severe with 36 cases of stillbirth or perinatal death. Extra renal malformations, including encephalocele, polydactyly and heart malformations, consistent with ciliopathy phenotypes, were frequently detected. Renal gene panel testing identified causative mutations in 21 out of 34 families (62%), where patient and parental DNA was available. In the remaining 10 families, where only parental DNA was available, 7 inferred causative mutations were found. Together, mutations were found in 12 different genes with a total of 13 novel pathogenic variants, including an inferred novel variant in NEK8. Mutations in CC2D2A were the most common cause of an antenatal cystic kidney disease and a suspected ciliopathy in our cohort. Conclusions In families with ciliopathy phenotypes, mutational analysis using a targeted renal gene panel allows a rapid molecular diagnosis and provides important information for patients, parents and their physicians.

Collaboration


Dive into the Mohamed Abouelhoda's collaboration.

Top Co-Authors

Avatar

Dorota Monies

King Abdulaziz City for Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian F. Meyer

King Abdulaziz City for Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Mohamed El-Kalioby

King Abdulaziz City for Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tariq Faquih

King Abdulaziz City for Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge