Mohamed Ameen Ismahil
University of Alabama at Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohamed Ameen Ismahil.
Circulation Research | 2014
Mohamed Ameen Ismahil; Tariq Hamid; Shyam S. Bansal; Bindiya Patel; Justin R Kingery; Sumanth D. Prabhu
Rationale: The role of mononuclear phagocytes in chronic heart failure (HF) is unknown. Objective: Our aim was to delineate monocyte, macrophage, and dendritic cell trafficking in HF and define the contribution of the spleen to cardiac remodeling. Methods and Results: We evaluated C57Bl/6 mice with chronic HF 8 weeks after coronary ligation. As compared with sham-operated controls, HF mice exhibited: (1) increased proinflammatory CD11b+F4/80+CD206− macrophages and CD11b+F4/80+Gr-1hi monocytes in the heart and peripheral blood, respectively, and reduced CD11b+F4/80+Gr-1hi monocytes in the spleen; (2) significantly increased CD11c+B220− classical dendritic cells and CD11c+/lowB220+ plasmacytoid dendritic cells in both the heart and spleen, and increased classic dendritic cells and plasmacytoid dendritic cells in peripheral blood and bone marrow, respectively; (3) increased CD4+ helper and CD8+ cytotoxic T-cells in the spleen; and (4) profound splenic remodeling with abundant white pulp follicles, markedly increased size of the marginal zone and germinal centers, and increased expression of alarmins. Splenectomy in mice with established HF reversed pathological cardiac remodeling and inflammation. Splenocytes adoptively transferred from mice with HF, but not from sham-operated mice, homed to the heart and induced long-term left ventricular dilatation, dysfunction, and fibrosis in naive recipients. Recipient mice also exhibited monocyte activation and splenic remodeling similar to HF mice. Conclusions: Activation of mononuclear phagocytes is central to the progression of cardiac remodeling in HF, and heightened antigen processing in the spleen plays a critical role in this process. Splenocytes (presumably splenic monocytes and dendritic cells) promote immune-mediated injurious responses in the failing heart and retain this memory on adoptive transfer.
American Journal of Physiology-heart and Circulatory Physiology | 2011
Mohamed Ameen Ismahil; Tariq Hamid; Petra Haberzettl; Yan Gu; Bysani Chandrasekar; Sanjay Srivastava; Aruni Bhatnagar; Sumanth D. Prabhu
Environmental triggers of dilated cardiomyopathy are poorly understood. Acute exposure to acrolein, a ubiquitous aldehyde pollutant, impairs cardiac function and cardioprotective responses in mice. Here, we tested the hypothesis that chronic oral exposure to acrolein induces inflammation and cardiomyopathy. C57BL/6 mice were gavage-fed acrolein (1 mg/kg) or water (vehicle) daily for 48 days. The dose was chosen based on estimates of human daily unsaturated aldehyde consumption. Compared with vehicle-fed mice, acrolein-fed mice exhibited significant (P < 0.05) left ventricular (LV) dilatation (LV end-diastolic volume 36 ± 8 vs. 17 ± 5 μl), contractile dysfunction (dP/dt(max) 4,697 ± 1,498 vs. 7,016 ± 1,757 mmHg/s), and impaired relaxation (tau 15.4 ± 4.3 vs. 10.4 ± 2.2 ms). Histological and biochemical evaluation revealed myocardial oxidative stress (membrane-localized protein-4-hydroxy-trans-2-nonenal adducts) and nitrative stress (increased protein-nitrotyrosine) and varying degrees of plasma and myocardial protein-acrolein adduct formation indicative of physical translocation of ingested acrolein to the heart. Acrolein also induced myocyte hypertrophy (~2.2-fold increased myocyte area, P < 0.05), increased apoptosis (~7.5-fold), and disrupted endothelial nitric oxide synthase in the heart. DNA binding studies, immunohistochemistry, and PCR revealed significant (P < 0.05) activation of nuclear factor-κB in acrolein-exposed hearts, along with upregulated gene expression of proinflammatory cytokines tumor necrosis factor-α and interleukin-1β. Long-term oral exposure to acrolein, at an amount within the range of human unsaturated aldehyde intake, induces a phenotype of dilated cardiomyopathy in the mouse. Human exposure to acrolein may have analogous effects and raise consideration of an environmental, aldehyde-mediated basis for heart failure.
Analytical Chemistry | 2010
Guruprasad A. Giridharan; Rosendo Estrada; Vahidreza Parichehreh; Tariq Hamid; Mohamed Ameen Ismahil; Sumanth D. Prabhu; Palaniappan Sethu
Physiological heart development and cardiac function rely on the response of cardiac cells to mechanical stress during hemodynamic loading and unloading. These stresses, especially if sustained, can induce changes in cell structure, contractile function, and gene expression. Current cell culture techniques commonly fail to adequately replicate physical loading observed in the native heart. Therefore, there is a need for physiologically relevant in vitro models that recreate mechanical loading conditions seen in both normal and pathological conditions. To fulfill this need, we have developed a microfluidic cardiac cell culture model (μCCCM) that for the first time allows in vitro hemodynamic stimulation of cardiomyocytes by directly coupling cell structure and function with fluid induced loading. Cells are cultured in a small (1 cm diameter) cell culture chamber on a thin flexible silicone membrane. Integrating the cell culture chamber with a pump, collapsible pulsatile valve and an adjustable resistance element (hemostatic valve) in series allow replication of various loading conditions experienced in the heart. This paper details the design, modeling, fabrication and characterization of fluid flow, pressure and stretch generated at various frequencies to mimic hemodynamic conditions associated with the normal and failing heart. Proof-of-concept studies demonstrate successful culture of an embryonic cardiomyoblast line (H9c2 cells) and establishment of an in vivo like phenotype within this system.
Circulation-heart Failure | 2017
Shyam S. Bansal; Mohamed Ameen Ismahil; Mehak Goel; Bindiya Patel; Tariq Hamid; Gregg Rokosh; Sumanth D. Prabhu
Background— Inappropriately sustained inflammation is a hallmark of chronic ischemic heart failure (HF); however, the pathophysiological role of T lymphocytes is unclear. Methods and Results— Permanent coronary ligation was performed in adult C57BL/6 mice. When compared with sham-operated mice, mice with HF (8 weeks after ligation) exhibited the following features: (1) significant (P<0.05) expansion of circulating CD3+CD8+ cytotoxic and CD3+CD4+ helper (Th) T lymphocytes, together with increased Th1, Th2, Th17, and regulatory T-cell (Treg) CD4+ subsets; (2) significant expansion of CD8+ and CD4+ T cells in failing myocardium, with increased Th1, Th2, Th17, and Treg CD4+ subsets, marked reduction of the Th1/Th2 ratio, augmentation of the Th17/Treg ratio, and upregulation of Th2 cytokines; and (3) significantly increased Th1, Th2, Th17 cells, and Tregs, in the spleen and mediastinal lymph nodes, with expansion of splenic antigen-experienced effector and memory CD4+ T cells. Antibody-mediated CD4+ T-cell depletion in HF mice (starting 4 weeks after ligation) reduced cardiac infiltration of CD4+ T cells and prevented progressive left ventricular dilatation and hypertrophy, whereas adoptive transfer of splenic CD4+ T cells (and, to a lesser extent, cardiac CD3+ T cells) from donor mice with HF induced long-term left ventricular dysfunction, fibrosis, and hypertrophy in naive recipient mice. Conclusions— CD4+ T lymphocytes are globally expanded and activated in chronic ischemic HF, with Th2 (versus Th1) and Th17 (versus Treg) predominance in failing hearts, and with expansion of memory T cells in the spleen. Cardiac and splenic T cells in HF are primed to induce cardiac injury and remodeling, and retain this memory on adoptive transfer.
PLOS ONE | 2017
Bindiya Patel; Mohamed Ameen Ismahil; Tariq Hamid; Shyam S. Bansal; Sumanth D. Prabhu
Background Although cardiac and splenic mononuclear phagocytes (MPs), i.e., monocytes, macrophages and dendritic cells (DCs), are key contributors to cardiac remodeling after myocardial infarction, their role in pressure-overload remodeling is unclear. We tested the hypothesis that these immune cells are required for the progression of remodeling in pressure-overload heart failure (HF), and that MP depletion would ameliorate remodeling. Methods and Results C57BL/6 mice were subjected to transverse aortic constriction (TAC) or sham operation, and assessed for alterations in MPs. As compared with sham, TAC mice exhibited expansion of circulating LyC6hi monocytes and pro-inflammatory CD206− cardiac macrophages early (1 w) after pressure-overload, prior to significant hypertrophy and systolic dysfunction, with subsequent resolution during chronic HF. In contrast, classical DCs were expanded in the heart in a biphasic manner, with peaks both early, analogous to macrophages, and late (8 w), during established HF. There was no significant expansion of circulating DCs, or Ly6C+ monocytes and DCs in the spleen. Periodic systemic MP depletion from 2 to 16 w after TAC in macrophage Fas-induced apoptosis (MaFIA) transgenic mice did not alter cardiac remodeling progression, nor did splenectomy in mice with established HF after TAC. Lastly, adoptive transfer of splenocytes from TAC HF mice into naïve recipients did not induce immediate or long-term cardiac dysfunction in recipient mice. Conclusions Mononuclear phagocytes populations expand in a phasic manner in the heart during pressure-overload. However, they are dispensable for the progression of remodeling and failure once significant hypertrophy is evident and blood monocytosis has normalized.
Journal of Molecular and Cellular Cardiology | 2017
Thomas L. Lynch; Mohamed Ameen Ismahil; Anil G. Jegga; Michael J. Zilliox; Christian Troidl; Sumanth D. Prabhu; Sakthivel Sadayappan
Cardiomyopathies are a leading cause of heart failure and are often caused by mutations in sarcomeric genes, resulting in contractile dysfunction and cellular damage. This may stimulate the production of a robust proinflammatory response. To determine whether myocardial inflammation is associated with cardiac dysfunction in dilated cardiomyopathy (DCM) caused by MYBPC3 mutation, we used the well-characterized cMyBP-C(t/t) mouse model of DCM at 3months of age. Compared to wild type (WT) mice, DCM mice exhibited significantly decreased fractional shortening (36.4±2% vs. 15.5±1.0%, p<0.0001) and significantly increased spleen weight (5.3±0.3 vs. 7.2±0.4mg/mm, p=0.002). Intriguingly, flow cytometry analysis revealed a significant increase in total (CD45+CD11b+Ly6C-MHCII+F480+) macrophages (6.5±1.4% vs. 14.8±1.4%, p=0.002) and classically activated (CD45+CD11b+Ly6C-MHCII+F480+CD206-) proinflammatory (M1) macrophages (3.4±0.8% vs. 10.3±1.2%, p=0.0009) in DCM hearts as compared with WT hearts. These results were further confirmed by immunofluorescence analysis of heart tissue sections. Splenic red pulp (CD11b+Ly6C+MHCIIlowF480hi) macrophages were significantly elevated (1.3±0.1% vs. 2.4±0.1%, p=0.0001) in DCM compared to WT animals. Serum cytokine analysis in DCM animals exhibited a significant increase (0.65±0.2 vs. 2.175±0.5pg/mL, p=0.02) in interleukin (IL)-6 compared to WT animals. Furthermore, RNA-seq analysis revealed the upregulation of inflammatory pathways in the DCM hearts. Together, these data indicate a robust proinflammatory response in DCM hearts, likely in response to cellular damage triggered by MYBPC3 mutation and resultant contractile dysfunction.
American Journal of Physiology-heart and Circulatory Physiology | 2016
Tariq Hamid; Yuanyuan Xu; Mohamed Ameen Ismahil; Qianhong Li; Steven P. Jones; Aruni Bhatnagar; Roberto Bolli; Sumanth D. Prabhu
Despite expansion of resident cardiac stem cells (CSCs; c-kit+Lin-) after myocardial infarction, endogenous repair processes are insufficient to prevent adverse cardiac remodeling and heart failure (HF). This suggests that the microenvironment in post-ischemic and failing hearts compromises CSC regenerative potential. Inflammatory cytokines, such as tumor necrosis factor-α (TNF), are increased after infarction and in HF; whether they modulate CSC function is unknown. As the effects of TNF are specific to its two receptors (TNFRs), we tested the hypothesis that TNF differentially modulates CSC function in a TNFR-specific manner. CSCs were isolated from wild-type (WT), TNFR1-/-, and TNFR2-/- adult mouse hearts, expanded and evaluated for cell competence and differentiation in vitro in the absence and presence of TNF. Our results indicate that TNF signaling in murine CSCs is constitutively related primarily to TNFR1, with TNFR2 inducible after stress. TNFR1 signaling modestly diminished CSC proliferation, but, along with TNFR2, augmented CSC resistance to oxidant stress. Deficiency of either TNFR1 or TNFR2 did not impact CSC telomerase activity. Importantly, TNF, primarily via TNFR1, inhibited cardiomyogenic commitment during CSC differentiation, and instead promoted smooth muscle and endothelial fates. Moreover, TNF, via both TNFR1 and TNFR2, channeled an alternate CSC neuroadrenergic-like fate (capable of catecholamine synthesis) during differentiation. Our results suggest that elevated TNF in the heart restrains cardiomyocyte differentiation of resident CSCs and may enhance adrenergic activation, both effects that would reduce the effectiveness of endogenous cardiac repair and the response to exogenous stem cell therapy, while promoting adverse cardiac remodeling.
JACC: Basic to Translational Science | 2018
Bindiya Patel; Shyam S. Bansal; Mohamed Ameen Ismahil; Tariq Hamid; Gregg Rokosh; Matthias Mack; Sumanth D. Prabhu
Visual Abstract
Circulation Research | 2014
Mohamed Ameen Ismahil; Tariq Hamid; Shyam S. Bansal; Bindiya Patel; Justin R Kingery; Sumanth D. Prabhu
Rationale: The role of mononuclear phagocytes in chronic heart failure (HF) is unknown. Objective: Our aim was to delineate monocyte, macrophage, and dendritic cell trafficking in HF and define the contribution of the spleen to cardiac remodeling. Methods and Results: We evaluated C57Bl/6 mice with chronic HF 8 weeks after coronary ligation. As compared with sham-operated controls, HF mice exhibited: (1) increased proinflammatory CD11b+F4/80+CD206− macrophages and CD11b+F4/80+Gr-1hi monocytes in the heart and peripheral blood, respectively, and reduced CD11b+F4/80+Gr-1hi monocytes in the spleen; (2) significantly increased CD11c+B220− classical dendritic cells and CD11c+/lowB220+ plasmacytoid dendritic cells in both the heart and spleen, and increased classic dendritic cells and plasmacytoid dendritic cells in peripheral blood and bone marrow, respectively; (3) increased CD4+ helper and CD8+ cytotoxic T-cells in the spleen; and (4) profound splenic remodeling with abundant white pulp follicles, markedly increased size of the marginal zone and germinal centers, and increased expression of alarmins. Splenectomy in mice with established HF reversed pathological cardiac remodeling and inflammation. Splenocytes adoptively transferred from mice with HF, but not from sham-operated mice, homed to the heart and induced long-term left ventricular dilatation, dysfunction, and fibrosis in naive recipients. Recipient mice also exhibited monocyte activation and splenic remodeling similar to HF mice. Conclusions: Activation of mononuclear phagocytes is central to the progression of cardiac remodeling in HF, and heightened antigen processing in the spleen plays a critical role in this process. Splenocytes (presumably splenic monocytes and dendritic cells) promote immune-mediated injurious responses in the failing heart and retain this memory on adoptive transfer.
Circulation Research | 2014
Mohamed Ameen Ismahil; Tariq Hamid; Shyam S. Bansal; Bindiya Patel; Justin R Kingery; Sumanth D. Prabhu
Rationale: The role of mononuclear phagocytes in chronic heart failure (HF) is unknown. Objective: Our aim was to delineate monocyte, macrophage, and dendritic cell trafficking in HF and define the contribution of the spleen to cardiac remodeling. Methods and Results: We evaluated C57Bl/6 mice with chronic HF 8 weeks after coronary ligation. As compared with sham-operated controls, HF mice exhibited: (1) increased proinflammatory CD11b+F4/80+CD206− macrophages and CD11b+F4/80+Gr-1hi monocytes in the heart and peripheral blood, respectively, and reduced CD11b+F4/80+Gr-1hi monocytes in the spleen; (2) significantly increased CD11c+B220− classical dendritic cells and CD11c+/lowB220+ plasmacytoid dendritic cells in both the heart and spleen, and increased classic dendritic cells and plasmacytoid dendritic cells in peripheral blood and bone marrow, respectively; (3) increased CD4+ helper and CD8+ cytotoxic T-cells in the spleen; and (4) profound splenic remodeling with abundant white pulp follicles, markedly increased size of the marginal zone and germinal centers, and increased expression of alarmins. Splenectomy in mice with established HF reversed pathological cardiac remodeling and inflammation. Splenocytes adoptively transferred from mice with HF, but not from sham-operated mice, homed to the heart and induced long-term left ventricular dilatation, dysfunction, and fibrosis in naive recipients. Recipient mice also exhibited monocyte activation and splenic remodeling similar to HF mice. Conclusions: Activation of mononuclear phagocytes is central to the progression of cardiac remodeling in HF, and heightened antigen processing in the spleen plays a critical role in this process. Splenocytes (presumably splenic monocytes and dendritic cells) promote immune-mediated injurious responses in the failing heart and retain this memory on adoptive transfer.