Mohamed Amine Zaouali
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohamed Amine Zaouali.
Cell Death and Disease | 2010
I Ben Mosbah; I. Alfany-Fernandez; C Martel; Mohamed Amine Zaouali; Maria Bintanel-Morcillo; A. Rimola; J. Rodés; C Brenner; J. Roselló-Catafau; Carmen Peralta
During partial hepatectomy, ischemia–reperfusion (I/R) is commonly applied in clinical practice to reduce blood flow. Steatotic livers show impaired regenerative response and reduced tolerance to hepatic injury. We examined the effects of tauroursodeoxycholic acid (TUDCA) and 4-phenyl butyric acid (PBA) in steatotic and non-steatotic livers during partial hepatectomy under I/R (PH+I/R). Their effects on the induction of unfolded protein response (UPR) and endoplasmic reticulum (ER) stress were also evaluated. We report that PBA, and especially TUDCA, reduced inflammation, apoptosis and necrosis, and improved liver regeneration in both liver types. Both compounds, especially TUDCA, protected both liver types against ER damage, as they reduced the activation of two of the three pathways of UPR (namely inositol-requiring enzyme and PKR-like ER kinase) and their target molecules caspase 12, c-Jun N-terminal kinase and C/EBP homologous protein-10. Only TUDCA, possibly mediated by extracellular signal-regulated kinase upregulation, inactivated glycogen synthase kinase-3β. This is turn, inactivated mitochondrial voltage-dependent anion channel, reduced cytochrome c release from the mitochondria and caspase 9 activation and protected both liver types against mitochondrial damage. These findings indicate that chemical chaperones, especially TUDCA, could protect steatotic and non-steatotic livers against injury and regeneration failure after PH+I/R.
Journal of Pineal Research | 2013
Mohamed Amine Zaouali; Eleonora Boncompagni; Russel J. Reiter; Mohamed Bejaoui; Isabel Freitas; Eirini Pantazi; Emma Folch-Puy; Hassen Ben Abdennebi; Francisco A. García-Gil; Joan Roselló-Catafau
Ischemia/reperfusion injury (IRI) associated with liver transplantation plays an important role in the induction of graft injury. Prolonged cold storage remains a risk factor for liver graft outcome, especially when steatosis is present. Steatotic livers exhibit exacerbated endoplasmic reticulum (ER) stress that occurs in response to cold IRI. In addition, a defective liver autophagy correlates well with liver damage. Here, we evaluated the combined effect of melatonin and trimetazidine as additives to IGL‐1 solution in the modulation of ER stress and autophagy in steatotic liver grafts through activation of AMPK. Steatotic livers were preserved for 24 hr (4°C) in UW or IGL‐1 solutions with or without MEL + TMZ and subjected to 2‐hr reperfusion (37°C). We assessed hepatic injury (ALT and AST) and function (bile production). We evaluated ER stress (GRP78, PERK, and CHOP) and autophagy (beclin‐1, ATG7, LC3B, and P62). Steatotic livers preserved in IGL‐1 + MEL + TMZ showed lower injury and better function as compared to those preserved in IGL‐1 alone. IGL‐1 + MEL + TMZ induced a significant decrease in GRP78, pPERK, and CHOP activation after reperfusion. This was consistent with a major activation of autophagic parameters (beclin‐1, ATG7, and LC3B) and AMPK phosphorylation. The inhibition of AMPK induced an increase in ER stress and a significant reduction in autophagy. These data confirm the close relationship between AMPK activation and ER stress and autophagy after cold IRI. The addition of melatonin and TMZ to IGL‐1 solution improved steatotic liver graft preservation through AMPK activation, which reduces ER stress and increases autophagy.
Journal of Biomedical Science | 2012
Asma Mahfoudh-Boussaid; Mohamed Amine Zaouali; Kaouther Hadj-Ayed; Abdelhedi Miled; Dalila Saidane-Mosbahi; Joan Roselló-Catafau; Hassen Ben Abdennebi
BackgroundAlthough recent studies indicate that renal ischemic preconditioning (IPC) protects the kidney from ischemia-reperfusion (I/R) injury, the precise protective mechanism remains unclear. In the current study, we investigated whether early IPC could upregulate hypoxia inducible transcription factor-1α (HIF-1α) expression and could reduce endoplasmic reticulum (ER) stress after renal I/R and whether pharmacological inhibition of nitric oxide (NO) production would abolish these protective effects.MethodsKidneys of Wistar rats were subjected to 60 min of warm ischemia followed by 120 min of reperfusion (I/R group), or to 2 preceding cycles of 5 min ischemia and 5 min reperfusion (IPC group), or to intravenously injection of NG-nitro-L-arginine methylester (L-NAME, 5 mg/kg) 5 min before IPC (L-NAME+IPC group). The results of these experimental groups were compared to those of a sham-operated group. Sodium reabsorption rate, creatinine clearance, plasma lactate dehydrogenase (LDH) activity, tissues concentrations of malonedialdehyde (MDA), HIF-1α and nitrite/nitrate were determined. In addition, Western blot analyses were performed to identify the amounts of Akt, endothelial nitric oxide synthase (eNOS) and ER stress parameters.ResultsIPC decreased cytolysis, lipid peroxidation and improved renal function. Parallely, IPC enhanced Akt phosphorylation, eNOS, nitrite/nitrate and HIF-1α levels as compared to I/R group. Moreover, our results showed that IPC increased the relative amounts of glucose-regulated protein 78 (GRP78) and decreased those of RNA activated protein kinase (PKR)-like ER kinase (PERK), activating transcription factor 4 (ATF4) and TNF-receptor-associated factor 2 (TRAF2) as judged to I/R group. However, pre treatment with L-NAME abolished these beneficial effects of IPC against renal I/R insults.ConclusionThese findings suggest that early IPC protects kidney against renal I/R injury via reducing oxidative and ER stresses. These effects are associated with phosphorylation of Akt, eNOS activation and NO production contributing thus to HIF-1α stabilization. The beneficial impact of IPC was abolished when NO production is inhibited before IPC application.
Journal of Pineal Research | 2010
Mohamed Amine Zaouali; Russel J. Reiter; Susagna Padrissa-Altés; Eleonora Boncompagni; J. García; Hassen Ben Abnennebi; Isabel Freitas; Francisco A. García-Gil; Joan Roselló-Catafau
Abstract: Chronic organ‐donor shortage has required the acceptance of steatotic livers for transplantation purposes despite the higher risk of graft dysfunction or nonfunction associated with the cold ischemia–reperfusion injury. This study evaluated the use of melatonin as an additive to Institute Georges Lopez (IGL‐1) solution for protecting nonsteatotic and steatotic liver grafts against cold ischemia–reperfusion injury. In the current investigation, we used an ex vivo isolated perfused rat liver model. Steatotic and nonsteatotic livers were preserved for 24 hr (4°C) in University of Wisconsin or IGL‐1 solutions with or without melatonin, as well as in University of Wisconsin solution alone. Thereafter, livers were subjected to 2‐hr reperfusion (37°C). We assessed hepatic injury (transaminases) and function [bile production and sulfobromophthalein (BSP) clearance, vascular resistance], as well as other factors potentially implicated in the high vulnerability of steatotic livers against ischemia–reperfusion injury (oxidative stress and related inflammatory mediators including nitric oxide and cytokines). We also evaluated well‐known cytoprotective factors as hemeoxygenase 1 (HO‐1). Fatty livers preserved in IGL‐1 solution enriched with melatonin showed lower transaminase levels and higher bile production and BSP clearance when compared to those obtained for livers maintained in IGL‐1 solution alone. A significant diminution of vascular resistance was also observed when melatonin was added to the IGL‐1 solution. The melatonin benefits correlated with the generation of nitric oxide (through constitutive e‐NOS activation) and the prevention of oxidative stress and inflammatory cytokine release including tumor necrosis factor and adiponectin, respectively. The addition of melatonin to IGL‐1 solution improved nonsteatotic and steatotic liver graft preservation, limiting their risk against cold ischemia–reperfusion injury.
Expert Opinion on Pharmacotherapy | 2010
Mohamed Amine Zaouali; Hassen Ben Abdennebi; Susagna Padrissa-Altés; Asma Mahfoudh-Boussaid; J. Roselló-Catafau
Importance of the field: Good organ preservation is a determinant of graft outcome after revascularization. The necessity of increasing the quality of organ preservation, as well as of extending cold storage time, has made it necessary to consider the use of pharmacological additives. Areas covered in this review: The complex physiopathology of cold-ischemia–reperfusion (I/R) injury – and in particular cell death, mitochondrial injury and endoplasmic reticulum stress – are reviewed. Basic principles of the formulation of the different preservation solutions are discussed. What the reader will gain: Current strategies and new trends in static organ preservation using additives such as trimetazidine, polyethylene glycols, melatonin, trophic factors and endothelin antagonists in solution are presented and discussed. The benefits and mechanisms responsible for enhancing organ protection against I/R injury are also discussed. Graft preservation was substantially improved when additives were added to the preservation solutions. Take home message: Enrichment of preservation solutions by additives is clinically useful only for short periods. For longer periods of cold ischemia, the use of such additives becomes insufficient because graft function deteriorates as a result of ischemia. In such conditions, the preservation strategy should be changed by the use of machine perfusion in normothermic conditions.
Journal of Biomedical Science | 2012
Asma Mahfoudh-Boussaid; Mohamed Amine Zaouali; Thierry Hauet; Kaouther Hadj-Ayed; Abdelhedi Miled; Sonia Ghoul-Mazgar; Dalila Saidane-Mosbahi; Joan Roselló-Catafau; Hassen Ben Abdennebi
BackgroundEndoplasmic reticulum (ER) and mitochondria have been implicated in the pathology of renal ischemia/reperfusion (I/R). In the present study, we investigated whether the use of ischemic postconditioning (IPostC) and trimetazidine (TMZ) separately or combined could reduce ER stress and mitochondria damage after renal ischemia.MethodsKidneys of Wistar rats were subjected to 60-min of warm ischemia followed by 120-min of reperfusion (I/R group, n = 6), or to 6 cycles of ischemia/reperfusion (10-s each cycle) just after 60-min of warm ischemia (IPostC group, n = 6), or to i.p. injection of TMZ (3 mg/kg) 30-min before ischemia (TMZ group, n = 6), or to the combination of both treatments (IPostC+TMZ group, n = 6). The results of these experimental groups were compared to those of a sham-operated group in which rat renal pedicles were only dissected. Sodium reabsorption rate, creatinine clearance lactate deshydrogenase (LDH) activity in plasma, and concentration of malonedialdehyde (MDA) in tissue were determined. In addition, Western blot analysis was performed to identify the amounts of cytochrome c, c-JunNH2-terminal kinase (JNK), voltage-dependent anion channel (VDAC), glycogen synthase kinase 3-beta (GSK3-β), and ER stress parameters.ResultsIPostC or/and TMZ significantly decreased cytolysis, oxidative stress and improved renal function in comparison to I/R group. IPostC but not TMZ significantly attenuated ER stress parameters versus I/R group. Indeed, it down-regulated the glucose-regulated protein 78 (GRP78), the activating transcription factor 4 (ATF4), the RNA activated protein kinase (PKR)-like ER kinas (PERK), the X box binding protein-1 (XBP-1) and the caspase12 protein levels. TMZ treatment significantly augmented GSK3-β phosphorylation and reduced levels of cytochrome c and VDAC phosphorylation in comparison to IPostC application. The combination of both treatments gave a synergetic effect. It significantly improved the survival rate, attenuated cytolysis, oxidative stress and improved renal function.ConclusionThis study revealed that IPostC protects kidney from I/R injury by suppressing ER stress while the beneficial effects of TMZ are mediated by mitochondria protection. The combination of both treatments ameliorated functional recovery.
Experimental and Molecular Pathology | 2013
Mohamed Amine Zaouali; Fawzia Bardag-Gorce; Teresa Carbonell; Joan Oliva; Eirini Pantazi; Mohamed Bejaoui; Hassen Ben Abdennebi; Antoni Rimola; Joan Roselló-Catafau
BACKGROUND The dramatic shortage of organs leads to consider the steatotic livers for transplantation although their poor tolerance against ischemia reperfusion injury (IRI). Ubiquitin proteasome system (UPS) inhibition during hypothermia prolongs myocardial graft preservation. The role of UPS in the liver IRI is not fully understood. Bortezomib (BRZ) treatment at non-toxic doses of rats fed alcohol chronically has shown protective effects by increasing liver antioxidant enzymes. We evaluated and compared both proteasome inhibitors BRZ and MG132 in addition to University of Wisconsin preservation solution (UW) at low and non-toxic dose for fatty liver graft protection against cold IRI. EXPERIMENTAL Steatotic and non-steatotic livers have been stored in UW enriched with BRZ (100 nM) or MG132 (25 μM), for 24h at 4°C and then subjected to 2-h normothermic reperfusion (37 °C). Liver injury (AST/ALT), hepatic function (bile output; vascular resistance), mitochondrial damage (GLDH), oxidative stress (MDA), nitric oxide (NO) (e-NOS activity; nitrates/nitrites), proteasome chymotrypsin-like activity (ChT), and UPS (19S and 20S5 beta) protein levels have been measured. RESULTS ChT was inhibited when BRZ and MG132 were added to UW. Both inhibitors prevented liver injury (AST/ALT), when compared to UW alone. BRZ increased bile production more efficiently than MG132. Only BRZ decreased vascular resistance in fatty livers, which correlated with an increase in NO generation (through e-NOS activation) and AMPK phosphorylation. GLDH and MDA were also prevented by BRZ. In addition, BRZ inhibited adiponectin, IL-1, and TNF alpha, only in steatotic livers. CONCLUSION MG132 and BRZ, administrated at low and non toxic doses, are very efficient to protect fatty liver grafts against cold IRI. The benefits of BRZ are more effective than those of MG132. This evidenced for the first time the potential use of UPS inhibitors for the preservation of marginal liver grafts and for future applications in the prevention of IRI.
Cell Death and Disease | 2012
I B Mosbah; Mohamed Amine Zaouali; C Martel; M Bjaoui; H B Abdennebi; G Hotter; C Brenner; J. Roselló-Catafau
Injury due to cold ischemia reperfusion (I/R) is a major cause of primary graft non-function following liver transplantation. We postulated that I/R-induced cellular damage during liver transplantation might affect the secretory pathway, particularly at the endoplasmic reticulum (ER). We examined the involvement of ER stress in organ preservation, and compared cold storage in University of Wisconsin (UW) solution and in Institute Georges Lopez-1 (IGL-1) solution. In one group of rats, livers were preserved in UW solution for 8 h at 4 °C, and then orthotopic liver transplantation was performed according to Kamadas cuff technique. In another group, livers were preserved in IGL-1 solution. The effect of each preservation solution on the induction of ER stress, hepatic injury, mitochondrial damage and cell death was evaluated. As expected, we found increased ER stress after liver transplantation. IGL-1 solution significantly attenuated ER damage by reducing the activation of three pathways of unfolded protein response and their effector molecules caspase-12, C/EBP homologous protein-10, X-box-binding protein 1, tumor necrosis factor-associated factor 2 and eukaryotic translation initiation factor 2. This attenuation of ER stress was associated with a reduction in hepatic injury and cell death. Our results show that IGL-1 solution may be a useful means to circumvent excessive ER stress reactions associated with liver transplantation, and may optimize graft quality.
Journal of Pharmacy and Pharmacology | 2014
Mohamed Bejaoui; Mohamed Amine Zaouali; Emma Folch-Puy; Eirini Pantazi; Fawzia Bardag-Gorce; Teresa Carbonell; Joan Oliva; Antoni Rimola; Hassen Ben Abdennebi; Joan Roselló-Catafau
The aim of this study is to investigate the protective mechanisms induced by bortezomib added to Institut George Lopez (IGL)‐1 preservation solution to protect steatotic livers against cold ischaemia reperfusion injury and to examine whether these mechanisms occur through the activation of adenosine monophosphate activated protein kinase (AMPK), Akt/mTOR pathways.
World Journal of Gastroenterology | 2013
Eirini Pantazi; Mohamed Amine Zaouali; Mohamed Bejaoui; Emma Folch-Puy; Hassen Ben Abdennebi; Joan Roselló-Catafau
Ischemia-reperfusion injury (IRI) remains an unresolved and complicated situation in clinical practice, especially in the case of organ transplantation. Several factors contribute to its complexity; the depletion of energy during ischemia and the induction of oxidative stress during reperfusion initiate a cascade of pathways that lead to cell death and finally to severe organ injury. Recently, the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases has gained increasing attention from researchers, due to their involvement in the modulation of a wide variety of cellular functions. There are seven mammalian sirtuins and, among them, the nuclear/cytoplasmic sirtuin 1 (SIRT1) and the mitochondrial sirtuin 3 (SIRT3) are ubiquitously expressed in many tissue types. Sirtuins are known to play major roles in protecting against cellular stress and in controlling metabolic pathways, which are key processes during IRI. In this review, we mainly focus on SIRT1 and SIRT3 and examine their role in modulating pathways against energy depletion during ischemia and their involvement in oxidative stress, apoptosis, microcirculatory stress and inflammation during reperfusion. We present evidence of the beneficial effects of sirtuins against IRI and emphasize the importance of developing new strategies by enhancing their action.