Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed Bentires-Alj is active.

Publication


Featured researches published by Mohamed Bentires-Alj.


Nature Nanotechnology | 2012

The nanomechanical signature of breast cancer.

Marija Plodinec; Marko Loparic; Christophe A. Monnier; Ellen C. Obermann; Rosanna Zanetti-Dällenbach; Philipp Oertle; Janne T. Hyotyla; Ueli Aebi; Mohamed Bentires-Alj; Roderick Y. H. Lim; Cora-Ann Schoenenberger

Cancer initiation and progression follow complex molecular and structural changes in the extracellular matrix and cellular architecture of living tissue. However, it remains poorly understood how the transformation from health to malignancy alters the mechanical properties of cells within the tumour microenvironment. Here, we show using an indentation-type atomic force microscope (IT-AFM) that unadulterated human breast biopsies display distinct stiffness profiles. Correlative stiffness maps obtained on normal and benign tissues show uniform stiffness profiles that are characterized by a single distinct peak. In contrast, malignant tissues have a broad distribution resulting from tissue heterogeneity, with a prominent low-stiffness peak representative of cancer cells. Similar findings are seen in specific stages of breast cancer in MMTV-PyMT transgenic mice. Further evidence obtained from the lungs of mice with late-stage tumours shows that migration and metastatic spreading is correlated to the low stiffness of hypoxia-associated cancer cells. Overall, nanomechanical profiling by IT-AFM provides quantitative indicators in the clinical diagnostics of breast cancer with translational significance.


Cancer Research | 2004

Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia.

Mohamed Bentires-Alj; J. Guillermo Paez; Frank S. David; Heike Keilhack; Balazs Halmos; Katsuhiko Naoki; John M. Maris; Andrea L. Richardson; Alberto Bardelli; David J. Sagarbaker; William G. Richards; Jinyan Du; Luc Girard; John D. Minna; Mignon L. Loh; David E. Fisher; Victor E. Velculescu; Bert Vogelstein; Matthew Meyerson; William R. Sellers; Benjamin G. Neel

The SH2 domain-containing protein-tyrosine phosphatase PTPN11 (Shp2) is required for normal development and is an essential component of signaling pathways initiated by growth factors, cytokines, and extracellular matrix. In many of these pathways, Shp2 acts upstream of Ras. About 50% of patients with Noonan syndrome have germ-line PTPN11 gain of function mutations. Associations between Noonan syndrome and an increased risk of some malignancies, notably leukemia and neuroblastoma, have been reported, and recent data indicate that somatic PTPN11 mutations occur in children with sporadic juvenile myelomonocytic leukemia, myelodysplasic syndrome, B-cell acute lymphoblastic leukemia, and acute myelogenous leukemia (AML). Juvenile myelomonocytic leukemia patients without PTPN11 mutations have either homozygotic NF-1 deletion or activating RAS mutations. Given the role of Shp2 in Ras activation and the frequent mutation of RAS in human tumors, these data raise the possibility that PTPN11 mutations play a broader role in cancer. We asked whether PTPN11 mutations occur in other malignancies in which activating RAS mutations occur at low but significant frequency. Sequencing of PTPN11 from 13 different human neoplasms including breast, lung, gastric, and neuroblastoma tumors and adult AML and acute lymphoblastic leukemia revealed 11 missense mutations. Five are known mutations predicted to result in an activated form of Shp2, whereas six are new mutations. Biochemical analysis confirmed that several of the new mutations result in increased Shp2 activity. Our data demonstrate that mutations in PTPN11 occur at low frequency in several human cancers, especially neuroblastoma and AML, and suggest that Shp2 may be a novel target for antineoplastic therapy.


Nature | 2014

Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis

Laura Bonapace; Marie-May Coissieux; Jeffrey Wyckoff; Kirsten D. Mertz; Zsuzsanna Varga; Tobias Junt; Mohamed Bentires-Alj

Secretion of C–C chemokine ligand 2 (CCL2) by mammary tumours recruits CCR2-expressing inflammatory monocytes to primary tumours and metastatic sites, and CCL2 neutralization in mice inhibits metastasis by retaining monocytes in the bone marrow. Here we report a paradoxical effect of CCL2 in four syngeneic mouse models of metastatic breast cancer. Surprisingly, interruption of CCL2 inhibition leads to an overshoot of metastases and accelerates death. This is the result of monocyte release from the bone marrow and enhancement of cancer cell mobilization from the primary tumour, as well as blood vessel formation and increased proliferation of metastatic cells in the lungs in an interleukin (IL)-6- and vascular endothelial growth factor (VEGF)-A-dependent manner. Notably, inhibition of CCL2 and IL-6 markedly reduced metastases and increased survival of the animals. CCL2 has been implicated in various neoplasias and adopted as a therapeutic target. However, our results call for caution when considering anti-CCL2 agents as monotherapy in metastatic disease and highlight the tumour microenvironment as a critical determinant of successful anti-metastatic therapy.


Cell | 2011

Activation of Multiple Proto-oncogenic Tyrosine Kinases in Breast Cancer via Loss of the PTPN12 Phosphatase

Tingting Sun; Nicola Aceto; Kristen L. Meerbrey; Jessica D. Kessler; Chunshui Zhou; Ilenia Migliaccio; Don X. Nguyen; Natalya N. Pavlova; Maria F. Botero; Jian Huang; Ronald J. Bernardi; Earlene M. Schmitt; Guang Hu; Mamie Z. Li; Noah Dephoure; Steven P. Gygi; Mitchell Rao; Chad J. Creighton; Susan G. Hilsenbeck; Chad A. Shaw; Donna M. Muzny; Richard A. Gibbs; David A. Wheeler; C. Kent Osborne; Rachel Schiff; Mohamed Bentires-Alj; Stephen J. Elledge; Thomas F. Westbrook

Among breast cancers, triple-negative breast cancer (TNBC) is the most poorly understood and is refractory to current targeted therapies. Using a genetic screen, we identify the PTPN12 tyrosine phosphatase as a tumor suppressor in TNBC. PTPN12 potently suppresses mammary epithelial cell proliferation and transformation. PTPN12 is frequently compromised in human TNBCs, and we identify an upstream tumor-suppressor network that posttranscriptionally controls PTPN12. PTPN12 suppresses transformation by interacting with and inhibiting multiple oncogenic tyrosine kinases, including HER2 and EGFR. The tumorigenic and metastatic potential of PTPN12-deficient TNBC cells is severely impaired upon restoration of PTPN12 function or combined inhibition of PTPN12-regulated tyrosine kinases, suggesting that TNBCs are dependent on the proto-oncogenic tyrosine kinases constrained by PTPN12. Collectively, these data identify PTPN12 as a commonly inactivated tumor suppressor and provide a rationale for combinatorially targeting proto-oncogenic tyrosine kinases in TNBC and other cancers based on their profile of tyrosine-phosphatase activity.


Nature Medicine | 2006

A role for the scaffolding adapter GAB2 in breast cancer

Mohamed Bentires-Alj; Susana G Gil; Richard Chan; Zhigang C. Wang; Yongping Wang; Naoko Imanaka; Lyndsay Harris; Andrea L. Richardson; Benjamin G. Neel; Haihua Gu

The scaffolding adapter GAB2 maps to a region (11q13-14) commonly amplified in human breast cancer, and is overexpressed in breast cancer cell lines and primary tumors, but its functional role in mammary carcinogenesis has remained unexplored. We found that overexpression of GAB2 (Grb2-associated binding protein 2) increases proliferation of MCF10A mammary cells in three-dimensional culture. Coexpression of GAB2 with antiapoptotic oncogenes causes lumenal filling, whereas coexpression with Neu (also known as ErbB2 and HER2) results in an invasive phenotype. These effects of GAB2 are mediated by hyperactivation of the Shp2-Erk pathway. Furthermore, overexpression of Gab2 potentiates, whereas deficiency of Gab2 ameliorates, Neu-evoked breast carcinogenesis in mice. Finally, GAB2 is amplified in some GAB2-overexpressing human breast tumors. Our data suggest that GAB2 may be a key gene within an 11q13 amplicon in human breast cancer and propose a role for overexpression of GAB2 in mammary carcinogenesis. Agents that target GAB2 or GAB2-dependent pathways may be useful for treating breast tumors that overexpress GAB2 or HER2 or both.


Cancer Cell | 2012

JAK2/STAT5 Inhibition Circumvents Resistance to PI3K/mTOR Blockade: A Rationale for Cotargeting These Pathways in Metastatic Breast Cancer

Adrian Britschgi; Rita Andraos; Heike Brinkhaus; Ina Klebba; Vincent Romanet; Urs Müller; Masato Murakami; Thomas Radimerski; Mohamed Bentires-Alj

Hyperactive PI3K/mTOR signaling is prevalent in human malignancies and its inhibition has potent antitumor consequences. Unfortunately, single-agent targeted cancer therapy is usually short-lived. We have discovered a JAK2/STAT5-evoked positive feedback loop that dampens the efficacy of PI3K/mTOR inhibition. Mechanistically, PI3K/mTOR inhibition increased IRS1-dependent activation of JAK2/STAT5 and secretion of IL-8 in several cell lines and primary breast tumors. Genetic or pharmacological inhibition of JAK2 abrogated this feedback loop and combined PI3K/mTOR and JAK2 inhibition synergistically reduced cancer cell number and tumor growth, decreased tumor seeding and metastasis, and also increased overall survival of the animals. Our results provide a rationale for combined targeting of the PI3K/mTOR and JAK2/STAT5 pathways in triple-negative breast cancer, a particularly aggressive and currently incurable disease.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Calcium-activated chloride channel ANO1 promotes breast cancer progression by activating EGFR and CAMK signaling

Adrian Britschgi; Anke Bill; Heike Brinkhaus; Christopher Rothwell; Ieuan Clay; Stephan Duss; Michael Rebhan; Pichai Raman; Chantale T. Guy; Kristie Wetzel; Elizabeth George; M. Oana Popa; Sarah Lilley; Hedaythul Choudhury; Martin Gosling; Louis Wang; Stephanie Fitzgerald; Jason Borawski; Jonathan Baffoe; Mark Labow; L. Alex Gaither; Mohamed Bentires-Alj

The calcium-activated chloride channel anoctamin 1 (ANO1) is located within the 11q13 amplicon, one of the most frequently amplified chromosomal regions in human cancer, but its functional role in tumorigenesis has remained unclear. The 11q13 region is amplified in ∼15% of breast cancers. Whether ANO1 is amplified in breast tumors, the extent to which gene amplification contributes to ANO1 overexpression, and whether overexpression of ANO1 is important for tumor maintenance have remained unknown. We have found that ANO1 is amplified and highly expressed in breast cancer cell lines and primary tumors. Amplification of ANO1 correlated with disease grade and poor prognosis. Knockdown of ANO1 in ANO1-amplified breast cancer cell lines and other cancers bearing 11q13 amplification inhibited proliferation, induced apoptosis, and reduced tumor growth in established cancer xenografts. Moreover, ANO1 chloride channel activity was important for cell viability. Mechanistically, ANO1 knockdown or pharmacological inhibition of its chloride-channel activity reduced EGF receptor (EGFR) and calmodulin-dependent protein kinase II (CAMKII) signaling, which subsequently attenuated AKT, v-src sarcoma viral oncogene homolog (SRC), and extracellular signal-regulated kinase (ERK) activation in vitro and in vivo. Our results highlight the involvement of the ANO1 chloride channel in tumor progression and provide insights into oncogenic signaling in human cancers with 11q13 amplification, thereby establishing ANO1 as a promising target for therapy in these highly prevalent tumor types.


BMC Cancer | 2008

Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes

Véronique Gelsi-Boyer; Virginie Trouplin; José Adélaïde; Nicola Aceto; Virginie Rémy; Stephane Pinson; Claude Houdayer; Christine Arnoulet; Danielle Sainty; Mohamed Bentires-Alj; Sylviane Olschwang; Norbert Vey; Marie-Joelle Mozziconacci; Daniel Birnbaum; Max Chaffanet

BackgroundChronic myelomonocytic leukemia (CMML) is a hematological disease close to, but separate from both myeloproliferative disorders (MPD) and myelodysplastic syndromes and may show either myeloproliferative (MP-CMML) or myelodysplastic (MD-CMML) features. Not much is known about the molecular biology of this disease.MethodsWe studied a series of 30 CMML samples (13 MP- and 11 MD-CMMLs, and 6 acutely transformed cases) from 29 patients by using Agilent high density array-comparative genomic hybridization (aCGH) and sequencing of 12 candidate genes.ResultsTwo-thirds of samples did not show any obvious alteration of aCGH profiles. In one-third we observed chromosome abnormalities (e.g. trisomy 8, del20q) and gain or loss of genes (e.g. NF1, RB1 and CDK6). RAS mutations were detected in 4 cases (including an uncommon codon 146 mutation in KRAS) and PTPN11 mutations in 3 cases. We detected 11 RUNX1 alterations (9 mutations and 2 rearrangements). The rearrangements were a new, cryptic inversion of chromosomal region 21q21-22 leading to break and fusion of RUNX1 to USP16. RAS and RUNX1 alterations were not mutually exclusive. RAS pathway mutations occurred in MP-CMMLs (~46%) but not in MD-CMMLs. RUNX1 alterations (mutations and cryptic rearrangement) occurred in both MP and MD classes (~38%).ConclusionWe detected RAS pathway mutations and RUNX1 alterations. The latter included a new cryptic USP16-RUNX1 fusion. In some samples, two alterations coexisted already at this early chronic stage.


Developmental Cell | 2010

Phosphatase-dependent and -independent functions of Shp2 in neural crest cells underlie LEOPARD syndrome pathogenesis.

Rodney A. Stewart; Takaomi Sanda; Hans R. Widlund; Shizhen Zhu; Kenneth D. Swanson; Aeron D. Hurley; Mohamed Bentires-Alj; David E. Fisher; Maria I. Kontaridis; A. Thomas Look; Benjamin G. Neel

The tyrosine phosphatase SHP2 (PTPN11) regulates cellular proliferation, survival, migration, and differentiation during development. Germline mutations in PTPN11 cause Noonan and LEOPARD syndromes, which have overlapping clinical features. Paradoxically, Noonan syndrome mutations increase SHP2 phosphatase activity, while LEOPARD syndrome mutants are catalytically impaired, raising the possibility that SHP2 has phosphatase-independent roles. By comparing shp2-deficient zebrafish embryos with those injected with mRNA encoding LEOPARD syndrome point mutations, we identify a phosphatase- and Erk-dependent role for Shp2 in neural crest specification and migration. We also identify an unexpected phosphatase- and Erk-independent function, mediated through its SH2 domains, which is evolutionarily conserved and prevents p53-mediated apoptosis in the brain and neural crest. Our results indicate that previously enigmatic aspects of LEOPARD syndrome pathogenesis can be explained by the combined effects of loss of Shp2 catalytic function and retention of an SH2 domain-mediated role that is essential for neural crest cell survival.


Biochemical Journal | 2011

Liver-specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and pharmacologically induced endoplasmic reticulum stress

Abdelali Agouni; Nimesh Mody; Carl Owen; Alicja Czopek; Derek J. Zimmer; Mohamed Bentires-Alj; Kendra K. Bence; Mirela Delibegovic

Obesity is associated with induction of the ER (endoplasmic reticulum)-stress response signalling and insulin resistance. PTP1B (protein tyrosine phosphatase 1B) is a major regulator of adiposity and insulin sensitivity. The aim of the present study was to investigate the role of L-PTP1B (liver-specific PTP1B) in chronically HFD (high-fat diet) and pharmacologically induced (tunicamycin and thapsigargin) ER-stress response signalling in vitro and in vivo. We assessed the effects of ER-stress response induction on hepatic PTP1B expression, and consequences of hepatic-PTP1B deficiency, in cells and mouse liver, on components of ER-stress response signalling. We found that PTP1B protein and mRNA expression levels were up-regulated in response to acute and/or chronic ER stress, in vitro and in vivo. Silencing PTP1B in hepatic cell lines or mouse liver (L-PTP1B(-/-)) protected against induction of pharmacologically induced and/or obesity-induced ER stress. The HFD-induced increase in CHOP (CCAAT/enhancer-binding protein homologous protein) and BIP (binding immunoglobulin protein) mRNA levels were partially inhibited, whereas ATF4 (activated transcription factor 4), GADD34 (growth-arrest and DNA-damage-inducible protein 34), GRP94 (glucose-regulated protein 94), ERDJ4 (ER-localized DnaJ homologue) mRNAs and ATF6 protein cleavage were completely suppressed in L-PTP1B(-/-) mice relative to control littermates. L-PTP1B(-/-) mice also had increased nuclear translocation of spliced XBP-1 (X box-binding protein-1) via increased p85α binding. We demonstrate that the ER-stress response and L-PTP1B expression are interlinked in obesity- and pharmacologically induced ER stress and this may be one of the mechanisms behind improved insulin sensitivity and lower lipid accumulation in L-PTP1B(-/-) mice.

Collaboration


Dive into the Mohamed Bentires-Alj's collaboration.

Top Co-Authors

Avatar

Heike Brinkhaus

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Adrian Britschgi

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Nicola Aceto

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Stephan Duss

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ina Klebba

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy E. Hynes

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Top Co-Authors

Avatar

Nicola Aceto

Friedrich Miescher Institute for Biomedical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge