Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed E. H. ElSayed is active.

Publication


Featured researches published by Mohamed E. H. ElSayed.


Biomaterials | 2011

N-acetylgalactosamine-functionalized dendrimers as hepatic cancer cell-targeted carriers

Scott H. Medina; Venkatesh Tekumalla; Maxim V. Chevliakov; Donna S. Shewach; William D. Ensminger; Mohamed E. H. ElSayed

There is an urgent need for novel polymeric carriers that can selectively deliver a large dose of chemotherapeutic agents into hepatic cancer cells to achieve high therapeutic activity with minimal systemic side effects. PAMAM dendrimers are characterized by a unique branching architecture and a large number of chemical surface groups suitable for coupling of chemotherapeutic agents. In this article, we report the coupling of N-acetylgalactosamine (NAcGal) to generation 5 (G5) of poly(amidoamine) (PAMAM-NH₂) dendrimers via peptide and thiourea linkages to prepare NAcGal-targeted carriers used for targeted delivery of chemotherapeutic agents into hepatic cancer cells. We describe the uptake of NAcGal-targeted and non-targeted G5 dendrimers into hepatic cancer cells (HepG2) as a function of G5 concentration and incubation time. We examine the contribution of the asialoglycoprotein receptor (ASGPR) to the internalization of NAcGal-targeted dendrimers into hepatic cancer cells through a competitive inhibition assay. Our results show that uptake of NAcGal-targeted G5 dendrimers into hepatic cancer cells occurs via ASGPR-mediated endocytosis. Internalization of these targeted carriers increased with the increase in G5 concentration and incubation time following Michaelis-Menten kinetics characteristic of receptor-mediated endocytosis. These results collectively indicate that G5-NAcGal conjugates function as targeted carriers for selective delivery of chemotherapeutic agents into hepatic cancer cells.


Biomaterials | 2010

Degradable, pH-sensitive, membrane-destabilizing, comb-like polymers for intracellular delivery of nucleic acids.

Yen Ling Lin; Guohua Jiang; Lisa K. Birrell; Mohamed E. H. ElSayed

This report describes the design and synthesis of a new series of degradable, pH-sensitive, membrane-destabilizing, comb-like polymers that can enhance the intracellular delivery of therapeutic nucleic acids. These comb-like polymers are based on a diblock polymer backbone where the first block is a copolymer of pH-sensitive ethyl acrylic acid (EAA) monomers and hydrophobic butyl methacrylate (BMA) or hexyl methacrylate monomers. The second block is a homopolymer of N-acryloxy succinimide (NASI) or ss-benzyl l-aspartate N-carboxy-anhydride (BLA-NCA) monomers, which are functionalized to allow controlled grafting of hydrophobic HMA and cationic trimethyl aminoethyl methacrylate (TMAEMA) copolymers via acid-labile hydrazone linkages. These comb-like polymers displayed high hemolytic activity in acidic solutions, which increased with the increase in polymer concentration. All comb-like polymers degraded into small fragments upon incubation in an acidic solution (pH 5.8) due to hydrolysis of the hydrazone linkages connecting the hydrophobic/cationic grafts to the polymer backbone. Comb-like polymers successfully complexed anti-GAPDH siRNA molecules into serum- and nuclease-stable particles, which successfully silenced GAPDH expression at both the mRNA and protein levels. These results collectively indicate the potential of these new comb-like polymers to serve as vehicles for effective intracellular delivery of therapeutic nucleic acids.


Analytical Chemistry | 2010

Fabrication of Two-Layered Channel System with Embedded Electrodes to Measure Resistance Across Epithelial and Endothelial Barriers

Nicholas J. Douville; Yi-Chung Tung; Ran Li; Jack D. Wang; Mohamed E. H. ElSayed; Shuichi Takayama

This manuscript describes a straightforward fabrication process for embedding Ag/AgCl electrodes within a two-layer poly(dimethylsiloxane) (PDMS) microfluidic chip where an upper and a lower channel are separated by a semiporous membrane. This system allows for the reliable real-time measurement of transendothelial and transepithelial electrical resistance (TEER), an accepted quantification of cell monolayer integrity, across cells cultured on membranes inside the microchannels using impedance spectroscopy. The technique eliminates the need for costly or specialized microelectrode fabrication, enabling commercially available wire electrodes to easily be incorporated into PDMS microsystems for measuring TEER under microfluidic environments. The capability of measuring impedance across a confluent cell monolayer is confirmed using (i) brain-derived endothelial cells (bEND.3), (ii) Madin Darby Canine Kidney Cells (MDCK-2), and mouse myoblast (C2C12) (all from ATCC, Manassas, VA). TEER values as a function of cell type and cell culture time were measured and both agree with previously published values from macroscale culture techniques. This system opens new opportunities for conveniently resolving both transendothelial and transepithelial electrical resistance to monitor cell function in real-time in microfluidic cell cultures.


Biomaterials | 2013

Enzyme-activated nanoconjugates for tunable release of doxorubicin in hepatic cancer cells

Scott H. Medina; Maxim V. Chevliakov; Gopinath Tiruchinapally; Yasemin Yuksel Durmaz; Sibu P. Kuruvilla; Mohamed E. H. ElSayed

We report the synthesis of a series of aromatic azo-linkers (L1-L4), which are selectively recognized and cleaved by azoreductase enzymes present in the cytoplasm of hepatic cancer cells via a NADPH-dependent mechanism. We utilized L1-L4 azo-linkers to conjugate doxorubicin to generation 5 (G5) of poly(amidoamine) dendrimers to prepare G5-L(x)-DOX nanoconjugates. We incorporated electron-donating oxygen (O) or nitrogen (N) groups in the para and ortho positions of L1-L4 azo-linkers to control the electronegativity of G5-L(x)-DOX conjugates and investigated their cleavage by azoreductase enzymes and the associated release of loaded DOX molecules. Hammett σ values of G5-L(x)-DOX conjugates ranged from -0.44 to -1.27, which is below the reported σ threshold (-0.37) required for binding to azoreductase enzymes. Results show that incubation of G5-L1-DOX (σ = -0.44), G5-L2-DOX (σ = -0.71), G5-L3-DOX (σ = -1.00), and G5-L4-DOX (σ = -1.27) conjugates with human liver microsomal (HLM) enzymes and the S9 fraction isolated from HepG2 hepatic cancer cells results in release of 4%-8%, 17%, 60%, and 100% of the conjugated DOX molecules, respectively. These results show that increasing the electronegativity (i.e. lower σ value) of L1-L4 azo-linkers increases their susceptibility to cleavage by azoreductase enzymes. Intracellular cleavage of G5-L(x)-DOX nanoconjugates, release of conjugated DOX molecules, and cytotoxicity correlated with conjugates electronegativity (σ value) was investigated, with G5-L4-DOX conjugate exhibiting the highest toxicity towards hepatic cancer cells with an IC50 of 13 nm ± 5 nm in HepG2 cells. Cleavage of G5-L(x)-DOX conjugates was specific to hepatic cancer cells as shown by low non-specific DOX release upon incubation with non-enzymatic insect proteins and the S9 fraction isolated from rat cardiomyocytes. These enzyme-activated G5-L(x)-DOX conjugates represent a drug delivery platform that can achieve tunable and cell-specific release of the loaded cargo in hepatic cancer cells.


Ultrasound in Medicine and Biology | 2010

Modulation of Intracellular Ca2+ Concentration in Brain Microvascular Endothelial Cells in vitro by Acoustic Cavitation

Juyoung Park; Zhenzhen Fan; Ronald E. Kumon; Mohamed E. H. ElSayed; Cheri X. Deng

Localized delivery of therapeutic agents through the blood-brain barrier (BBB) is a clinically significant task that remains challenging. Ultrasound (US) application after intravenous administration of microbubbles has been shown to generate localized BBB opening in animal models but the detailed mechanisms are not yet fully described. The current study investigates the effects of US-stimulated microbubbles on in vitro murine brain microvascular endothelial (bEnd.3) cells by monitoring sonoporation and changes in intracellular calcium concentration ([Ca(2+)](i)) using real-time fluorescence and high-speed brightfield microscopy. Cells seeded in microchannels were exposed to a single US pulse (1.25 MHz, 10 cycles, 0.24 MPa peak negative pressure) in the presence of Definity microbubbles and extracellular calcium concentration [Ca(2+)](o) = 0.9 mM. Disruption of the cell membrane was assessed using propidium iodide (PI) and change in the [Ca(2+)](i) was measured using fura-2. Cells adjacent to a microbubble exhibited immediate [Ca(2+)](i) changes after US pulse with and without PI uptake and the [Ca(2+)](i) changes were twice as large in cells with PI uptake. Cell viability assays showed that sonoporated cells could survive with modulation of [Ca(2+)](i) and uptake of PI. Cells located near sonoporated cells were observed to exhibit changes in [Ca(2+)](i) that were delayed from the time of US application and without PI uptake. These results demonstrate that US-stimulated microbubbles not only directly cause changes in [Ca(2+)](i) in brain endothelial cells in addition to sonoporation but also generate [Ca(2+)](i) transients in cells not directly interacting with microbubbles, thereby affecting cells in larger regions beyond the cells in contact with microbubbles.


Molecular Pharmaceutics | 2016

Organization of Endothelial Cells, Pericytes, and Astrocytes into a 3D Microfluidic in Vitro Model of the Blood–Brain Barrier

Jack D. Wang; El Sayed Khafagy; Khalil Khanafer; Shuichi Takayama; Mohamed E. H. ElSayed

The endothelial cells lining the capillaries supplying the brain with oxygen and nutrients form a formidable barrier known as the blood-brain barrier (BBB), which exhibits selective permeability to small drug molecules and virtually impermeable to macromolecular therapeutics. Current in vitro BBB models fail to replicate this restrictive behavior due to poor integration of the endothelial cells with supporting cells (pericytes and astrocytes) following the correct anatomical organization observed in vivo. We report the coculture of mouse brain microvascular endothelial cells (b.End3), pericytes, with/without C8-D1A astrocytes in layered microfluidic channels forming three-dimensional (3D) bi- and triculture models of the BBB. The live/dead assay indicated high viability of all cultured cells up to 21 days. Trans-endothelial electrical resistance (TEER) values confirmed the formation of intact monolayers after 3 days in culture and showed statistically higher values for the triculture model compared to the single and biculture models. Screening the permeability of [(14)C]-mannitol and [(14)C]-urea showed the ability of bi- and triculture models to discriminate between different markers based on their size. Further, permeability of [(14)C]-mannitol across the triculture model after 18 days in culture matched its reported permeability across the BBB in vivo. Mathematical calculations also showed that the radius of the tight junctions pores (R) in the triculture model is similar to the reported diameter of the BBB in vivo. Finally, both the bi- and triculture models exhibited functional expression of the P-glycoprotein efflux pump, which increased with the increase in the number of days in culture. These results collectively indicate that the triculture model is a robust in vitro model of the BBB.


Theranostics | 2013

Nanodroplet-Mediated Histotripsy for Image-guided Targeted Ultrasound Cell Ablation

Eli Vlaisavljevich; Yasemin Yuksel Durmaz; Adam D. Maxwell; Mohamed E. H. ElSayed; Zhen Xu

This paper is an initial work towards developing an image-guided, targeted ultrasound ablation technique by combining histotripsy with nanodroplets that can be selectively delivered to tumor cells. Using extremely short, high-pressure pulses, histotripsy generates a dense cloud of cavitating microbubbles that fractionates tissue. We hypothesize that synthetic nanodroplets that encapsulate a perfluoropentane (PFP) core will transition upon exposure to ultrasound pulses into gas microbubbles, which will rapidly expand and collapse resulting in disruption of cells similar to the histotripsy process but at a significantly lower acoustic pressure. The significantly reduced cavitation threshold will allow histotripsy to be selectively delivered to the tumor tissue and greatly enhance the treatment efficiency while sparing neighboring healthy tissue. To test our hypothesis, we prepared nanodroplets with an average diameter of 204±4.7 nm at 37°C by self-assembly of an amphiphilic triblock copolymer around a PFP core followed by cross-linkage of the polymer shell forming stable nanodroplets. The nanodroplets were embedded in agarose tissue phantoms containing a sheet of red blood cells (RBCs), which were exposed to 2-cycle pulses applied by a 500 kHz focused transducer. Using a high speed camera to monitor microbubble generation, the peak negative pressure threshold needed to generate bubbles >50 μm in agarose phantoms containing nanodroplets was measured to be 10.8 MPa, which is significantly lower than the 28.8 MPa observed using ultrasound pulses alone. High speed images also showed cavitation microbubbles produced from the nanodroplets displayed expansion and collapse similar to histotripsy alone at higher pressures. Nanodroplet-mediated histotripsy created consistent, well-defined fractionation of the RBCs in agarose tissue phantoms at 10 Hz pulse repetition frequency similar to the lesions generated by histotripsy alone but at a significantly lower pressure. These results support our hypothesis and demonstrate the potential of using nanodroplet-mediated histotripsy for targeted cell ablation.


Advanced Healthcare Materials | 2013

Targeting Hepatic Cancer Cells with PEGylated Dendrimers Displaying N -Acetylgalactosamine and SP94 Peptide Ligands

Scott H. Medina; Gopinath Tiruchinapally; Maxim V. Chevliakov; Yasemin Yuksel Durmaz; Rachell Stender; William D. Ensminger; Donna S. Shewach; Mohamed E. H. ElSayed

Poly(amidoamine) (PAMAM) dendrimers are branched water-soluble polymers defined by consecutive generation numbers (Gn) indicating a parallel increase in size, molecular weight, and number of surface groups available for conjugation of bioactive agents. In this article, we compare the biodistribution of N-acetylgalactosamine (NAcGal)-targeted [(14) C]1 -G5-(NH2 )5 -(Ac)108 -(NAcGal)14 particles to non-targeted [(14) C]1 -G5-(NH2 )127 and PEGylated [(14) C]1 -G5-(NH2 )44 -(Ac)73 -(PEG)10 particles in a mouse hepatic cancer model. Results show that both NAcGal-targeted and non-targeted particles are rapidly cleared from the systemic circulation with high distribution to the liver. However, NAcGal-targeted particles exhibited 2.5-fold higher accumulation in tumor tissue compared to non-targeted ones. In comparison, PEGylated particles showed a 16-fold increase in plasma residence time and a 5-fold reduction in liver accumulation. These results motivated us to engineer new PEGylated G5 particles with PEG chains anchored to the G5 surface via acid-labile cis-aconityl linkages where the free PEG tips are functionalized with NAcGal or SP94 peptide to investigate their potential as targeting ligands for hepatic cancer cells as a function of sugar conformation (α versus β), ligand concentration (100-4000 nM), and incubation time (2 and 24 hours) compared to fluorescently (Fl)-labeled and non-targeted G5-(Fl)6 -(NH2 )122 and G5-(Fl)6 -(Ac)107 -(cPEG)15 particles. Results show G5-(Fl)6 -(Ac)107 -(cPEG[NAcGalβ ])14 particles achieve faster uptake and higher intracellular concentrations in HepG2 cancer cells compared to other G5 particles while escaping the non-specific adsorption of serum protein and phagocytosis by Kupffer cells, which make these particles the ideal carrier for selective drug delivery into hepatic cancer cells.


Ultrasound in Medicine and Biology | 2015

Effects of Ultrasound Frequency on Nanodroplet-Mediated Histotripsy.

Eli Vlaisavljevich; Omer Aydin; Yasemin Yuksel Durmaz; Kuang Wei Lin; Brian Fowlkes; Mohamed E. H. ElSayed; Zhen Xu

Nanodroplet-mediated histotripsy (NMH) is a targeted ultrasound ablation technique combining histotripsy with nanodroplets that can be selectively delivered to tumor cells for targeted tumor ablation. In a previous study, it was reported that by use of extremely short, high-pressure pulses, histotripsy cavitation bubbles were generated in regions containing nanodroplets at significantly lower pressure (∼10.8 MPa) than without nanodroplets (∼28 MPa) at 500 kHz. Furthermore, it was hypothesized that lower frequency would improve the effectiveness of NMH by increasing the size of the focal region, increasing bubble expansion, and decreasing the cavitation threshold. In this study, we investigated the effects of ultrasound frequency (345 kHz, 500 kHz, 1.5 MHz, and 3 MHz) on NMH. First, the NMH cavitation threshold was measured in tissue phantoms with and without nanodroplets, with results indicating that the NMH threshold was significantly below the histotripsy intrinsic threshold at all frequencies. Results also indicated that the NMH threshold decreased at lower frequency, ranging from 7.4 MPa at 345 kHz to 13.2 MPa at 3 MHz. In the second part of this study, the effects of frequency on NMH bubble expansion were investigated, with results indicating larger expansion at lower frequency, even at a lower pressure. In the final part of this study, the ability of perfluoropentane-encapsulated nanodroplets to act as sustainable cavitation nuclei over multiple pulses was investigated, with results indicating that the nanodroplets are destroyed by the cavitation process and only function as cavitation nuclei for the first few pulses, with this effect being most pronounced at higher frequencies. Overall, the results of this study support our hypothesis that using a lower frequency will improve the effectiveness of NMH by increasing the size of the focal region, increasing bubble expansion and decreasing the cavitation threshold.


Nanoscale | 2010

Quantitative evaluation of the effect of poly(amidoamine) dendrimers on the porosity of epithelial monolayers

Yen Ling Lin; Khalil Khanafer; Mohamed E. H. ElSayed

Poly(amidoamine) (PAMAM) dendrimers are a family of water-soluble polymers with a characteristic tree-like branching architecture and a large number of surface groups, which have been used to immobilize a variety of therapeutic molecules for targeted drug delivery. Earlier studies showed that small cationic PAMAM-NH2 and selected anionic PAMAM-COOH dendrimers permeate across in vitro models of the small intestinal epithelium by paracellular and transcellular transport mechanisms. The focus of this research is to mathematically calculate the effect of cationic, anionic, and neutral PAMAM dendrimers on the porosity of epithelial tight junctions as a function of dendrimers concentration, incubation time, generation number, and charge density. Results show that the increase in the concentration, incubation time and generation number of cationic G0-G2 PAMAM-NH2 and anionic G2.5 and G3.5 PAMAM-COOH dendrimers caused a corresponding increase in the porosity of Caco-2 cell monolayers. Neutral G2-G4 PAMAM-OH dendrimers had no effect on the porosity of intestinal cells. These results provide quantitative evidence that the observed increase in permeability of PAMAM dendrimers across Caco-2 cell monolayers is due to their effect on the organization of the tight junctions and the associated increase in membrane porosity. Furthermore, these results emphasize the potential of cationic PAMAM-NH2 and anionic PAMAM-COOH dendrimers to function as carriers for controlled oral drug delivery.

Collaboration


Dive into the Mohamed E. H. ElSayed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott H. Medina

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen Xu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Omer Aydin

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge