Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed E. Shaker is active.

Publication


Featured researches published by Mohamed E. Shaker.


Toxicology and Applied Pharmacology | 2011

Comparison of imatinib, nilotinib and silymarin in the treatment of carbon tetrachloride-induced hepatic oxidative stress, injury and fibrosis

Mohamed E. Shaker; Khaled Zalata; Wajahat Z. Mehal; Gamal Shiha; Tarek M. Ibrahim

Effective and well-tolerated anti-fibrotic drugs are currently lacking. Therefore, this study was carried out to investigate the potential anti-fibrotic effects of imatinib, nilotinib and silymarin on established hepatic fibrosis in the carbon tetrachloride (CCl(4)) rat model. Male Wistar rats received intraperitoneal injections of CCl(4) twice weekly for 8weeks, as well as daily intraperitoneal treatments of imatinib (10 and 20mg/kg), nilotinib (10 and 20mg/kg) and silymarin (100mg/kg) during the last 4weeks of CCl(4)-intoxication. At the end of the study, hepatic damage was evaluated by analysis of liver function tests and hepatic oxidative stress parameters. Hepatic fibrosis was evaluated by histopathology and morphometry, as well as collagen and 4-hydroxyproline contents. Nilotinib (20mg/kg) was the most effective treatment to counteract CCl(4)-induced hepatic injury as indicated by liver function tests and histopathology. Nilotinib (10mg/kg), nilotinib (20mg/kg) and silymarin (100mg/kg) treatments reduced the mean score of hepatic fibrosis by 31%, 68% and 47%, respectively, and hepatic collagen content by 47%, 49% and 18%, respectively in CCl(4)-treated rats. Hepatic morphometric evaluation and 4-hydroxyproline content revealed that CCl(4)-induced fibrosis was ameliorated significantly by nilotinib (20mg/kg) and imatinib (20mg/kg). Unlike nilotinib, imatinib (20mg/kg) showed some sort of hepatic injury evidenced by elevation of serum aminotransferases and total bilirubin levels, and hepatic total nitrate/nitrite content, as well as characteristic anisonucleosis visualized with the hematoxylin-eosin staining. In conclusion, this study provides the evidence that nilotinib exerts anti-fibrotic activity and suggests that it may be valuable in the treatment of hepatic fibrosis in humans.


European Journal of Pharmacology | 2011

Comparison of early treatment with low doses of nilotinib, imatinib and a clinically relevant dose of silymarin in thioacetamide-induced liver fibrosis.

Mohamed E. Shaker; Gamal Shiha; Tarek M. Ibrahim

Our previous study has already confirmed a promising anti-fibrotic activity especially for nilotinib; when given at a daily dose of 10 mg/kg during the last 4 weeks of thioacetamide (TAA)-induced liver fibrosis for 12 weeks in rats. Therefore, this study was carried out to compare the prophylactic potential of low dose of nilotinib to that of its predecessor, imatinib, and a clinically relevant dose of the standard hepatoprotective treatment, silymarin, in TAA-intoxication. Male Wistar rats received intraperitoneal injections of TAA (150 mg/kg, twice weekly) for 8 weeks, as well as oral treatments with imatinib (5 mg/kg/day), nilotinib (5 mg/kg/day) and silymarin (50 mg/kg/day) from the first day of TAA-intoxication. At the end of the study, chronic hepatic injury was evaluated by analysis of liver function tests in serum. Hepatic oxidative stress was assessed by measuring malondialdehyde, 4-hydroxynonenal, total nitrate/nitrite and reduced glutathione contents, as well as myeloperoxidase and superoxide dismutase activities. Hepatic fibrosis was evaluated by histopathology and collagen content. Our results suggest that the prophylactic potential of nilotinib (5 mg/kg/day), imatinib (5mg/kg/day) and silymarin (50 mg/kg/day) in TAA-intoxication for 8 weeks is lower than the late treatments of nilotinib (10 mg/kg/day), imatinib (10mg/kg/day) and silymarin (100 mg/kg/day) during the last 4 weeks of TAA-intoxication for 12 weeks in rats. Taken together, this study suggests that nilotinib may have higher anti-fibrotic activity when administered at a significant stage of fibrosis as a result of impairment of its metabolism in the fibrotic livers.


Chemico-Biological Interactions | 2014

Celastrol ameliorates murine colitis via modulating oxidative stress, inflammatory cytokines and intestinal homeostasis.

Mohamed E. Shaker; Sylvia A. Ashamallah; Maha E. Houssen

Therapeutic agents that block the nuclear factor-kappa B (NF-κB) pathway might be beneficial for incurable inflammatory diseases, such as ulcerative colitis. Here, we investigated the effect of the novel NF-κB inhibitor celastrol on murine colitis. Colitis was induced in male mice by administration of 5% (w/v) dextran sulfate sodium (DSS) in drinking water for a period of 5 days, followed by a 2 day recovery period. Celastrol (2mg/kg, oral) was administered daily over the 1 week of the study. Our results indicated that treatment with celastrol attenuated DSS-induced colon shortening and neutrophil infiltration. Besides, celastrol ameliorated DSS-induced colon injury and inflammatory signs as visualized by histopathology. The mechanisms behind these beneficial effects of celastrol were also elucidated. These include (i) counteracting DSS-induced oxidative stress in the colon via decreasing lipid peroxidation products (malondialdehyde and 4-hydroxynonenal) and increasing the antioxidant levels (reduced glutathione, glutathione-S-transferase and superoxide dismutase); (ii) inhibiting DSS-induced activation of the NLRP3-inflammasome, as evidenced by decreased production of IL-1β and IFN-γ as indirect measure of IL-18 in the colon; (iii) targeting DSS-induced activation of the IL-23/IL-17 pathway by abating the elevation of IL-23 and IL-17A levels in the colon; (iv) augmenting the anti-inflammatory defense mechanisms via increasing IL-10 and TNF-α levels in the colon; (v) and more importantly, maintaining intestinal epithelial reconstitution and homeostasis via attenuating the overexpression of CD98 in colonic epithelial cells. In conclusion, our study provides novel insights into the beneficial effects of celastrol as a promising candidate for the treatment of ulcerative colitis in humans.


Chemico-Biological Interactions | 2014

Modulation of carbon tetrachloride-induced hepatic oxidative stress, injury and fibrosis by olmesartan and omega-3.

Ahmed A. Shaaban; Mohamed E. Shaker; Khaled Zalata; Hassan A. El-Kashef; Tarek M. Ibrahim

This study was designed to investigate the potential effects of omega-3, olmesartan and their combination on established hepatic fibrosis in the carbon tetrachloride (CCl4) rat model. Male Wistar rats received subcutaneous injections of CCl4 twice weekly for 12weeks, as well as daily oral treatments of olmesartan (1 and 3mg/kg), omega-3 (75 and 150mg/kg) and their combination during the last 4weeks of intoxication. Our results indicated that omega-3 and, to a lesser extent, olmesartan dose-dependently blunted CCl4-induced necroinflammation scoring and elevation of liver injury parameters in serum. Besides, omega-3 and, to a lesser extent, olmesartan treatments in a dose dependent manner attenuated CCl4-induced liver fibrosis, as demonstrated by hepatic histopathology scoring and 4-hydroxyproline content. The mechanisms behind these beneficial effects of both omega-3 and olmesartan were also elucidated. These include (1) counteracting hepatic oxidative stress and augmenting hepatic antioxidants; (2) preventing the activation of hepatic stellate cells (HSCs), as denoted by reducing α-smooth muscle actin (α-SMA) expression in the liver; (3) inhibiting the proliferation and chemotaxis of HSCs, as evidenced by downregulating platelet-derived growth factor receptors-β (PDGFR-β) expression in the liver; and (4) inhibiting the fibrogenesis response of HSCs, as indicated by inhibiting the secretion of transforming growth factor-β1 (TGF-β1). Unexpectedly, when olmesartan was co-administered with omega-3, it interfered with the hepatoprotective and anti-fibrotic activities of omega-3. In conclusion, this study introduces the first evidence regarding the pronounced anti-fibrotic activity of omega-3 and suggests that it may be beneficial in the treatment of hepatic fibrosis in humans.


Chemico-Biological Interactions | 2014

The novel Janus kinase inhibitor ruxolitinib confers protection against carbon tetrachloride-induced hepatotoxicity via multiple mechanisms

Sara H. Hazem; Mohamed E. Shaker; Sylvia A. Ashamallah; Tarek M. Ibrahim

Therapeutic targeting of the JAK/STAT pathway, the principal signaling mechanism for numerous cytokines, might be an effective approach for limiting inflammation in different organs, including the liver. Therefore, we investigated whether targeting this pathway by the novel JAK inhibitor ruxolitinib could mitigate hepatic damage provoked by carbon tetrachloride (CCl4). Male mice received ruxolitinib treatments (75 and 150 mg/kg, oral) 2 h prior to intoxication with CCl4 (10 ml/kg of 0.3% v/v CCl4 solution in olive oil, intraperitoneal) for 24 h. Our results showed that ruxolitinib treatments dose-dependently alleviated CCl4-induced hepatic injury and necroinflammation, as indicated by biochemical markers of injury and histopathology. We unraveled also the mechanisms involved in these hepatoprotective effects. These comprise (i) reducing infiltration of neutrophils and macrophages, as demonstrated by reducing myeloperoxidase activity and F4/80 positive macrophages; (ii) abating apoptosis of hepatocytes, as denoted by decreasing hepatocytes positive for Bax protein; (iii) inhibiting elevation of TNF-α, IL-1β and IL-10; (iv) inhibiting NF-κB activation and translocation to the nucleus, as visualized immunohistochemically; (v) attenuating activation of the IL-23/IL-17 pathway via targeting IL-17, but not IL-23; (vi) antagonizing hepatic oxidative stress by increasing the antioxidant levels (reduced glutathione, glutathione-S-transferase and superoxide dismutase) and decreasing products of lipid peroxidation (malondialdehyde and 4-hydroxynonenal) and total nitrate/nitrite; and (vii) more interestingly, modulating hepatocyte regeneration according to the extent of damage, as quantified by PCNA-immunohistochemistry. In conclusion, our study sheds light on the therapeutic usefulness and the potential underlying mechanisms of the novel JAK inhibitor ruxolitinib in hepatic inflammatory disorders.


Basic & Clinical Pharmacology & Toxicology | 2014

Nilotinib Interferes with the Signalling Pathways Implicated in Acetaminophen Hepatotoxicity

Mohamed E. Shaker

Nilotinib, a second‐generation tyrosine kinase inhibitor, has been recently approved for the treatment for chronic myeloid leukaemia. The objective of this study was to explore the potential effects of clinically relevant doses of nilotinib against acetaminophen (APAP)‐induced hepatotoxicity in mice. To simulate the clinical application in human beings, nilotinib (25 and 50 mg/kg) was administered to mice 2 hr after APAP intoxication (500 mg/kg). The results indicated that nilotinib (25 mg/kg) (i) abolished APAP‐induced liver injury and necro‐inflammation, (ii) increased hepatic‐reduced glutathione (GSH) and its related enzymes synthesis, (iii) suppressed hepatic oxidative/nitrosative stress cascades, (iv) decreased neutrophil accumulation in the liver, and (v) prevented the over‐expression of B‐cell lymphoma‐2 (bcl‐2), cyclin‐D1 and stem cell factor receptor (c‐Kit) proteins in the liver. Although nilotinib (50 mg/kg) acted through the same mechanisms, there was severe depletion in hepatic GSH content by nilotinib itself at that dose level, rather than the potent stimulation observed by using a dose of 25 mg/kg. Consequently, the mortality rate after 18 hr was 100% for nilotinib (50 mg/kg) + APAP (750 mg/kg) versus 60% for APAP (750 mg/kg) and 40% for nilotinib (25 mg/kg) + APAP (750 mg/kg) in the survival analysis experiment. In conclusion, nilotinib can counteract the hepatotoxicity produced by a non‐lethal dose of APAP. However, there is a risk of aggravating the mortality for a lethal dose of APAP when nilotinib is co‐administered at doses relatively high, or near to the clinical range because of hepatic GSH depletion and c‐kit inhibition.


Toxicology Letters | 2017

Repression of acetaminophen-induced hepatotoxicity by a combination of celastrol and brilliant blue G

Heba A. Abdelaziz; Mohamed E. Shaker; Mohamed F. Hamed; Nariman M. Gameil

The sterile inflammatory response is an eminent contributor to acetaminophen (APAP)-hepatotoxicity in humans. Recent advances unraveled an axial role of the NLRP3-inflammasome in APAP-post injury inflammation. Nevertheless, the role of signaling events preceded the NLRP3-inflammasome activation, like the transcription factor NF-κB and the purinergic receptor P2X7, is still unclear and needs further elucidation. Here, we investigated the pharmacological inhibition of these upstream signaling molecules by celastrol and brilliant blue G (BBG) (separately or simultaneously) in APAP-hepatotoxicity in mice. The results indicated that both celastrol and BBG pretreatments, especially when combined together, curbed APAP-induced hepatocellular injury (ALT, AST and LDH) and death (necrosis and apoptosis). The underlying mechanisms of protection of such combination against APAP-challenge were attributed to their efficient cooperation in: i) preventing the consumption of hepatic antioxidants (reduced glutathione and superoxide dismutase); ii) limiting the overproduction of lipid peroxidation aldehydes (malondialdehyde and 4-hydroxynonenal) and total nitrate/nitrite products; iii) attenuating the inflammatory cells accumulation in the liver, as evidenced by reducing the number of F4/80 positive cells/field in immunostaining and myeloperoxidase activity; iv) reversing the dysregulation in production of pro-inflammatory (TNF-α, IL-17A and IL-23) and anti-inflammatory (IL-10) cytokines; and v) enhancing the reparative capacity of injured hepatocytes, as demonstrated by increasing the percentage of PCNA positive hepatocytes per field of immunostaining. In conclusion, this murine study elicits a potential clinical applicability and therapeutic utility of celastrol and BBG combination in human cases of APAP-overdose hepatotoxicity.


Toxicology Letters | 2016

The novel c-Met inhibitor capmatinib mitigates diethylnitrosamine acute liver injury in mice

Mohamed E. Shaker; Sylvia A. Ashamallah; Mohamed El-Mesery

The receptor tyrosine kinase mesenchymal-epithelial transition factor (c-Met) sits at the interface between controlled cellular division of organogenesis and uncontrolled cellular division of carcinogenesis. c-Met contribution to the initial phases of liver injury and inflammation is still not resolved. Herein, we investigated the selective pharmacological intervention of c-Met by capmatinib (formerly known as INC280) in the diethylnitrosamine (DEN) acute liver injury model in mice. c-Met inhibition by capmatinib reduced DEN-induced elevation of the pro-inflammatory cytokines TNF-α, IL-1β, IL-17A, IL-23(p19/40) and IFN-γ, which correlated well with serum markers of hepatocellular injury (ALT, AST and LDH). The protective effects possessed by capmatinib were mainly mediated by inhibiting inflammatory cells infiltration to the liver. However, hematoxylin-eosin and bax-immunohistochemical stainings revealed that capmatinib (at a dose of 10, but not 5mg/kg) aggravated DEN-induced hepatocellular ballooning and apoptosis, respectively. These effects were concordant with hepatocellular overexpression of the amino acid transporter CD98. Such capmatinib effects arised mostly from exaggerating the elevation of the mutagenic lipid peroxide 4-HNE along with MDA that enhanced DEN-induced compensatory proliferation evidenced by PCNA expression. In conclusion, inhibition of c-Met activation by capmatinib may provide protection against liver injury, but may trigger undesirable elevation of the mutagenic 4-HNE.


Experimental Biology and Medicine | 2016

The SMAC mimetic BV6 induces cell death and sensitizes different cell lines to TNF-α and TRAIL-induced apoptosis.

Mohamed El-Mesery; Mohamed E. Shaker; Abdelaziz Elgaml

The inhibitors of apoptosis proteins are implicated in promoting cancer cells survival and resistance toward immune surveillance and chemotherapy. Second mitochondria-derived activator of caspases (SMAC) mimetics are novel compounds developed to mimic the inhibitory effect of the endogenous SMAC/DIABLO on these IAPs. Here, we examined the potential effects of the novel SMAC mimetic BV6 on different human cancer cell lines. Our results indicated that BV6 was able to induce cell death in different human cancer cell lines. Mechanistically, BV6 dose dependently induced degradation of IAPs, including cIAP1 and cIAP2. This was coincided with activating the non-canonical NF-kappa B (NF-κB) pathway, as indicated by stabilizing NF-κB-inducing kinase (NIK) for p100 processing to p52. More interestingly, BV6 was able to sensitize some of the resistant cancer cell lines to apoptosis induced by the death ligands tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) that are produced by different cells of the immune system. Such cell death enhancement was mediated by inducing an additional cleavage of caspase-9 to augment that of caspase-8 induced by death ligands. This eventually led to more processing of the executioner caspase-3 and poly (ADP-ribose) polymerase (PARP). In conclusion, therapeutic targeting of IAPs by BV6 might be an effective approach to enhance cancer regression induced by immune system. Our data also open up the future possibility of using BV6 in combination with other antitumor therapies to overcome cancer drug resistance.


Food and Chemical Toxicology | 2016

Inhibition of the JAK/STAT pathway by ruxolitinib ameliorates thioacetamide-induced hepatotoxicity.

Mohamed E. Shaker; Sara H. Hazem; Sylvia A. Ashamallah

Collaboration


Dive into the Mohamed E. Shaker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge