Mohamed Lazali
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohamed Lazali.
Journal of Experimental Botany | 2012
Adnane Bargaz; Cherki Ghoulam; Laurie Amenc; Mohamed Lazali; Mustapha Faghire; Josiane Abadie; Jean-Jacques Drevon
Although previous studies on N2-fixing legumes have demonstrated the contribution of acid phosphatases to their phosphorus (P) use efficiency under P-deficient growth conditions, localization of these enzymes in bean nodules has not been demonstrated. In this study, phosphoenol pyruvate phosphatase (PEPase) gene transcripts were localized within the nodule tissues of two recombinant inbred lines, RIL115 (P-deficiency tolerant) and RIL147 (P-deficiency sensitive), of Phaseolus vulgaris. Nodules were induced by Rhizobium tropici CIAT899 under hydroaeroponic conditions with a sufficient versus a deficient P supply. The results indicated that PEPase transcripts were particularly abundant in the nodule infected zone and cortex of both RILs. Analysis of fluorescence intensity indicated that nodule PEPase was induced under conditions of P deficiency to a significantly higher extent in RIL147 than in RIL115, and more in the inner cortex (91%) than in the outer cortex (71%) or the infected zone (79%). In addition, a significant increase (39%) in PEPase enzyme activity in the P-deficient RIL147 correlated with an increase (58%) in the efficiency of use in rhizobial symbiosis. It was concluded that nodule PEPase is upregulated under conditions of P deficiency in the P-deficiency-sensitive RIL147, and that this gene may contribute to adaptation of rhizobial symbiosis to low-P environments.
International Journal of Molecular Sciences | 2015
Adnane Bargaz; Mainassara Zaman-Allah; Mohamed Farissi; Mohamed Lazali; Jean-Jacques Drevon; Rim Tinhinen Maougal; Georg Carlsson
Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints.
Plant Physiology and Biochemistry | 2014
Mohamed Lazali; Jean Jacques Drevon
To understand the relationship between phosphorus use efficiency (PUE) and respiration for symbiotic nitrogen fixation (SNF) in legume nodules, six recombinant inbred lines of common bean (RIL Phaseolus vulgaris L.), contrasting in PUE for SNF, were inoculated with Rhizobium tropici CIAT899, and grown under hydroaeroponic culture with sufficient versus deficient P supply (250 versus 75 μmol P plant(-1) week(-1)). At the flowering stage, the biomass of plants and phytase activity in nodules were analyzed after measuring O2 uptake by nodulated roots. Our results show that the P-deficiency significantly increased the phytase activity in nodules of all RILs though with highest extent for RILs 147, 29 and 83 (ca 45%). This increase in phytase activity was associated with an increase in nodule respiration (ca 22%) and in use of the rhizobial symbiosis (ca 21%). A significant correlation was found under P-deficiency between nodule O2 permeability and phytase activity in nodules for RILs 104, 34 and 115. This observation is to our knowledge the first description of a correlation between O2 permeability and phytase activity of a legume nodule. It is concluded that the variation of phytase activity in nodules can increase the internal utilization of P and might be involved in the regulation of nodule permeability for the respiration linked with SNF and the adaptation to P-deficiency.
Journal of Plant Physiology | 2016
Mohamed Lazali; Adnane Bargaz; Samira Brahimi; Laurie Amenc; Josiane Abadie; Jean Jacques Drevon
While increased P-hydrolysing acid phosphatases (APase) activity in bean nodules is well documented under phosphorus (P) limitation, gene expression and subcellular localization patterns within the N2-fixing nodule tissues are poorly understood. The aim of this research was to track the enzyme activity along with the intra-nodular localization of fructose-1,6-bisphosphatase (FBPase), and its contribution to P use efficiency (PUE) under symbiotic nitrogen fixation (SNF) in Phaseolus vulgaris. The FBPase transcript were localized in situ using RT-PCR and the protein activity was measured in nodules of two contrasting recombinant inbred lines (RILs) of P. vulgaris, namely RILs 115 (P-efficient) and 147 (P-inefficient), that were grown under sufficient versus deficient P supply. Under P-deficiency, higher FBPase transcript fluorescence was found in the inner cortex as compared to the infected zone of RIL115. In addition, both the specific FBPase and total APase enzyme activities significantly increased in both RILs, but to a more significant extent in RIL115 as compared to RIL147. Furthermore, the increased FBPase activity in nodules of RIL115 positively correlated with higher use efficiency of both the rhizobial symbiosis (23%) and P for SNF (14% calculated as the ratio of N2 fixed per nodule total P content). It is concluded that the abundant tissue-specific localized FBPase transcript along with induced enzymatic activity provides evidence of a specific tolerance mechanism where N2-fixing nodules overexpress under P-deficiency conditions. Such a mechanism would maximise the intra-nodular inorganic P fraction necessary to compensate for large amount of P needed during the SNF process.
Food Additives & Contaminants: Part B | 2017
Samira Mebdoua; Mohamed Lazali; Sidi Mohamed Ounane; Sihem Tellah; Fahima Nabi; Ghania Ounane
ABSTRACT A total of 160 samples of 13 types of fresh fruits and vegetables from domestic production and import were analysed to detect the presence of pesticide residues. Analysis was performed by multi-residual extraction followed by gas chromatography–mass spectrometry. In 42.5% of the tested samples, no residues were found and 12.5% of samples contained pesticide residues above maximum residue limits. Risk assessment for long-term exposure was done for all pesticides detected in this study. Except chlorpyrifos and lambda-cyhalothrin, exposure to pesticides from vegetables and fruits was below 1% of the acceptable daily intake. Short-term exposure assessment revealed that in seven pesticide/commodity combinations, including three pesticides (chlorpyrifos, deltamethrin and lambda-cyhalothrin), the acute reference dose had been exceeded.
Symbiosis | 2018
Mohamed Lazali; Jean Jacques Drevon
Phosphorus (P) deficiency initiates a myriad of transcriptional, biochemical and physiological responses stimulating either the root’s extracellular abilities to acquire soil P in the rhizosphere or optimize its intracellular use efficiency and allocation through all plant organs. Enhancing activity of acid phosphatase (APase) to acquire and remobilize Pi from organic P compounds is one important strategy for improving plant P nutrition. The release of APase to the rhizosphere is a typical and almost universal P-starvation response in higher plants. However, relatively little is known about the functions of intracellular APase in legume nodules. The aim of this review was to track the enzyme activity along with the intra-nodular localization of APase, and its contribution in the rhizobial symbiosis tolerance to P-deficiency. Our findings have revealed that expression of APase and phytases genes and activities of the corresponding enzymes were positively correlated with increases both of the P use efficiency for N2 fixation and nodule O2 permeability in the rhizobial symbiosis with legumes. The induced enzyme activity and the marked transcripts localization of APase and phytase in nodule cortex would control nodule respiration and contribute to adaptation of nodulated legumes to low-P availability. Thus, the increase of APase and phytase activities in legume nodules supports a physiological role of these enzymes in the regulation of nitrogenase activity in connection with the nodule-P status, and opens up a new scenario for a better understanding of the regulation of N2 fixation in legumes.
Archive | 2017
Mohamed Lazali; Adnane Bargaz
Legumes improve agricultural sustainability through symbiotic dinitrogen (N2) fixation which constitutes a major input into agroecosystems and may provide an ecologically acceptable complement or substitute for mineral nitrogen fertilizers. However, low soil nutrient availability, notably phosphorus (P), is among the most nutrient limitations for legumes whose sensitivity to P deficiency has been attributed to low soil P availability and higher P requirements during the symbiotic N2 fixation process. In response to P deficiency, plants use various adaptive strategies to improve soil P availability and their uptake efficiency, which involves modifications in nodulated-root architecture, rhizosphere acidification, and induction of genes involved in P use efficiency such as high-affinity P transporters and P-hydrolyzing phosphatases enzymes. This chapter reports numerous legume tolerance strategies to P deficiency that link morphological, physiological, and molecular responses. Stimulation of the root’s extracellular potentialities to improve solubilization and acquisition of the rhizosphere soil P as well as optimization of intracellular use efficiency and allocation of P has been described. Coincident with most knowledge on legume performance under P deficiency, exploration of biotic factors with synergistic and complementary interactions for the benefit of both plants and soil microorganisms is increasingly adopted. A holistic understanding of the key mechanisms underlying legume tolerance to abiotic constraints will be valuable for strategies to improve symbiotic N2 fixation and sustainable agriculture in a world of increasing population and declining renewable resources.
European Journal of Agronomy | 2016
Mourad Latati; Adnane Bargaz; Baroudi Belarbi; Mohamed Lazali; Samia Benlahrech; Siham Tellah; Ghiles Kaci; Jean Jacques Drevon; Sidi Mohamed Ounane
Biological nitrogen fixation | 2015
Jean-Jacques Drevon; Josiane Abadie; Nora Alkama; Andry Andriamananjara; Laurie Amenc; Adnane Bargaz; Georg Carlssonn; Benoît Jaillard; Mohamed Lazali; Cherki Ghoulam; Sidi Mohamed Ounane
European Journal of Soil Biology | 2016
Mohamed Lazali; Samira Brahimi; Chahinez Merabet; Mourad Latati; Chahinez Benadis; Rim Tinhinen Maougal; Didier Blavet; Jean Jacques Drevon; Sidi Mohamed Ounane