Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed Morsy-Osman is active.

Publication


Featured researches published by Mohamed Morsy-Osman.


Journal of Lightwave Technology | 2013

Spectral Efficiency-Adaptive Optical Transmission Using Time Domain Hybrid QAM for Agile Optical Networks

Qunbi Zhuge; Mohamed Morsy-Osman; Xian Xu; Mathieu Chagnon; Meng Qiu; David V. Plant

We report the transmission of time domain hybrid QAM (TDHQ) signals for agile optical networks. A continuous tradeoff between spectral efficiency and achievable distance by mixing modulation formats including QPSK, 8QAM, and 16QAM is demonstrated in two scenarios: 1) 28 Gbaud non-return-to-zero (NRZ) signal for fixed 50 GHz grid systems; 2) superchannel transmission at date rates of up to 1.15 Tb/s and spectral efficiencies of up to 7.68 b/s/Hz. The TDHQ signal is generated using high-speed digital-to-analog converters (DACs) at the transmitter, and low-complexity digital signal processing (DSP) is proposed for processing the TDHQ signals at the receiver. Moreover, the nonlinearity tolerance of hybrid QAM signals with different configurations is investigated.


Journal of Lightwave Technology | 2015

Experimental Parametric Study of a Silicon Photonic Modulator Enabled 112-Gb/s PAM Transmission System With a DAC and ADC

Mathieu Chagnon; Mohamed Morsy-Osman; Michel Poulin; Carl Paquet; Stephane Lessard; David V. Plant

A packaged silicon photonic traveling wave Mach-Zehnder modulator operating at 1310 nm is presented and studied. The modulator is a series push-pull device and requires a bias applied to the common n-doped region. Effects of varying the bias voltage on the modulators Vπ bandwidth, and on chip-insertion loss are studied, and its impact on transmission performance are experimentally investigated for PAM-4 and PAM-8 formats at a throughput of 112 Gb/s, over varying distances of 0, 2, 10, and 20 km. Residual chromatic dispersion is shown to have no impact on performance up to 20 km. The PAM RF driving waveform is generated by an 8-bit digital-to-analog converter, while direct detection is done with a PIN+TIA followed by an 8-bit analog-to-digital converter. This IM/DD system utilizes digital signal processing with transmitter spectral compensation and receiver residual equalization. The performance impact for a varying number of transmitter precompensation taps and receiver equalization taps is studied, which has a direct impact on the transceivers power consumption. Using PAM-4, a BER below the FEC limit is obtained for either combinations of (transmitter, receiver) tap lengths: (19,19), (7,27), or (35,7), allowing flexibility in power consumption distribution.


Optics Express | 2014

Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems

Meng Qiu; Qunbi Zhuge; Mathieu Chagnon; Yuliang Gao; Xian Xu; Mohamed Morsy-Osman; David V. Plant

In this work we experimentally investigate the improved intra-channel fiber nonlinearity tolerance of digital subcarrier multiplexed (SCM) signals in a single-channel coherent optical transmission system. The digital signal processing (DSP) for the generation and reception of the SCM signals is described. We show experimentally that the SCM signal with a nearly-optimum number of subcarriers can extend the maximum reach by 23% in a 24 GBaud DP-QPSK transmission with a BER threshold of 3.8 × 10(-3) and by 8% in a 24 GBaud DP-16-QAM transmission with a BER threshold of 2 × 10(-2). Moreover, we show by simulations that the improved performance of SCM signals is observed over a wide range of baud rates, further indicating the merits of SCM signals in baud-rate flexible agile transmissions and future high-speed optical transport systems.


Journal of Lightwave Technology | 2015

224-Gb/s 10-km Transmission of PDM PAM-4 at 1.3 μm Using a Single Intensity-Modulated Laser and a Direct-Detection MIMO DSP-Based Receiver

Mohamed Morsy-Osman; Mathieu Chagnon; Michel Poulin; Stephane Lessard; David V. Plant

A polarization-division-multiplexed (PDM) intensity-modulation/direct-detection (IM/DD) system enabled by a novel multiple-input and multiple-output DSP operating in the Stokes space following a DD receiver is demonstrated. Modulating the intensity of the two orthogonal polarization states of a single laser enables doubling the maximum achievable bit rate per wavelength channel, which halves the number of required laser sources in a transceiver using PDM and WDM to achieve an aggregate bit rate compared to using only WDM. Quantitatively, 224 Gb/s is experimentally transmitted over 10 km using a single 1310-nm laser and a silicon photonic intensity modulator using 56-Gbaud PDM PAM-4 with a BER of 4.1 × 10-3. Also, PDM enables halving the baud rate needed to achieve 112 Gb/s resulting in 20-km transmission at low BERs (10-5 -10-6), using either 56-Gbaud PAM-2 or 28-Gbaud PAM-4. These low pre-FEC BERs achieved at 112 Gb/s allow reducing the FEC overhead required compared to a single polarization system that employs twice the baud rate to achieve the same bit rate. Though the transceiver was implemented using discrete components, it can be fully integrated on a SiP chip, enabling its practical realization for short-reach optical interconnects inside datacenters. Finally, in addition to the experimental results, we perform simulations to further investigate the performance of the receiver. In particular, we studied the impact of varying the splitting ratios of the two couplers in the proposed front-end and concluded that using 67/33 couplers instead of 50/50 couplers renders the performance completely independent of the state of polarization of the received signal.


IEEE Signal Processing Magazine | 2014

Advanced DSP Techniques Enabling High Spectral Efficiency and Flexible Transmissions: Toward elastic optical networks

Alan Pak Tao Lau; Yuliang Gao; Qi Sui; Dawei Wang; Qunbi Zhuge; Mohamed Morsy-Osman; Mathieu Chagnon; Xian Xu; Chao Lu; David V. Plant

In this article, we describe advances in digital signal processing (DSP) techniques that enable Tb/s transmission, and software-defined flexible transponders that support adaptive modulation formats and elastic optical networks (EONs).


Optics Express | 2012

Pilot-aided carrier phase recovery for M-QAM using superscalar parallelization based PLL.

Qunbi Zhuge; Mohamed Morsy-Osman; Xian Xu; Mohammad E. Mousa-Pasandi; Mathieu Chagnon; Ziad A. El-Sahn; David V. Plant

In this paper, we present a carrier phase recovery (CPR) algorithm using a modified superscalar parallelization based phase locked loop (M-SSP-PLL) combined with a maximum-likelihood (ML) phase estimation. Compared to the original SSP-PLL, M-SSP-PLL + ML reduces the required buffer size using a novel superscalar structure. In addition, by removing the differential coding/decoding and employing ML phase recovery it also improves the performance. In simulation, we show that the laser linewidth tolerance of M-SSP-PLL + ML is comparable to blind phase search (BPS) algorithm, which is known to be one of the best CPR algorithms in terms of performance for arbitrary QAM formats. In 28 Gbaud QPSK (112 Gb/s) and 16-QAM (224 Gb/s), and 7 Gbaud 64-QAM (84 Gb/s) experiments, it is also demonstrated that M-SSP-PLL + ML can increase the transmission distance by at least 12% compared to BPS for each of them. Finally, the computational complexity is discussed and a significant reduction is shown for our algorithm with respect to BPS.


Journal of Lightwave Technology | 2013

Low Overhead Intra-Symbol Carrier Phase Recovery for Reduced-Guard-Interval CO-OFDM

Qunbi Zhuge; Mohamed Morsy-Osman; David V. Plant

We propose intra-symbol carrier phase recovery (IS-CPR) for reduced-guard-interval (RGI) CO-OFDM in order to compensate for the intra-symbol phase shift (ISPS) between subcarriers that is caused by the dispersion-enhanced phase noise (DEPN). We begin by proposing a pre-emphasized pilot subcarrier (PEPS) approach to reduce the pilot subcarrier overhead for the following IS-CPR algorithms. Then, we show a statistical analysis of the DEPN-induced ISPS between subcarriers within one symbol, which is related to the accumulated chromatic dispersion (CD). Next, three algorithms are proposed for IS-CPR including maximum-likelihood (ML) phase estimation, digital phase-locked loop (DPLL), and feedforward carrier recovery (FFCR) employing either the Mth power scheme in case of QPSK modulation or the QPSK partitioning scheme for the 16-QAM case. The performance and complexity of these algorithms are compared. Through simulations, we show that in comparison to conventional common phase error (CPE) compensation, IS-CPR significantly improves the linewidth tolerance at 1 dB signal-to-noise ratio (SNR) penalty for a bit error rate (BER) = 10-3 from 300 kHz to 2 MHz for 112 Gb/s systems (28 Gbaud QPSK) at 3200 km transmission distance, and from 70 kHz to 550 kHz for 448 Gb/s (56 Gbaud 16-QAM) systems at 1600 km transmission distance.


Optics Express | 2014

Analytical and experimental performance evaluation of an integrated Si-photonic balanced coherent receiver in a colorless scenario

Mohamed Morsy-Osman; Mathieu Chagnon; Xian Xu; Qunbi Zhuge; Michel Poulin; Yves Painchaud; Martin Pelletier; Carl Paquet; David V. Plant

We study analytically and experimentally the performance limits of a Si-photonic (SiP) balanced coherent receiver (CRx) co-packaged with transimpedance amplifiers (TIAs) in a colorless WDM scheme. Firstly, the CRx architecture is depicted and characterization results are presented. Secondly, an analytical expression for the signal-to-noise ratio (SNR) at the CRx output is rigorously developed and various noise sources in the context of colorless reception are outlined. Thirdly, we study experimentally the system-level CRx performance in colorless reception of 16 × 112 Gbps PDM-QPSK WDM channels. Using a 15.5 dBm local oscillator (LO) power, error free transmissions over 4800 and 4160 km at received powers of -3 and -21 dBm per channel, respectively, were achieved in a fully colorless and preamplifierless reception. Next, a set of measurements on one of the center WDM channels is performed where the LO power, received signal power, distance, and number of channels presented to the CRx are swept to evaluate the performance limits of colorless reception. Results reveal that the LO beating with optical noise incoming with the signal is a dominant noise source regardless of received signal power. In the high received signal power regime (~0 dBm/channel), the self-beat noise from out-of-band (OOB) channels is an additional major noise source especially for small LO-to-signal power ratio, short reach and large number of OOB channels. For example, at a received signal power of 0 dBm/channel after 1600 km transmission, the SNR difference between the fully filtered and colorless scenarios, where 1 and 16 channels are passed to the CRx respectively, grows from 0.5 to 3.3 dB as the LO power changes from 12 to 0 dBm. For low received power (~-12 dBm/channel), the effect of OOB channels becomes minor while the receiver shot and thermal noises become more significant. We identify the common mode rejection ratio (CMRR) and sensitivity as the two important CRx specifications that impact the performance at high and low received signal power regimes, respectively. Finally, an excellent match between experimental and analytical SNRs is proven after the derived SNR model is fitted to the experimental data in a least-squares sense. The model is then used to predict that the CRx can operate colorlessly for a fully populated WDM spectrum with 80 channels provided that the LO-to-signal power ratio is properly set.


optical fiber communication conference | 2013

Ultra-compact coherent receiver based on hybrid integration on silicon

Yves Painchaud; Martin Pelletier; Michel Poulin; François Pelletier; C. Latrasse; Guillaume Robidoux; Simon Savard; Jean-Frédéric Gagné; Vincent Trudel; Marie-Josée Picard; Patrick Poulin; Patrick Sirois; Frédéric D'Amours; Daniel Asselin; Stéphane Paquet; Carl Paquet; Michel Cyr; M. Guy; Mohamed Morsy-Osman; Qunbi Zhuge; Xian Xu; Mathieu Chagnon; David V. Plant

A coherent receiver based on silicon photonics is presented. Its performance is confirmed by single-channel and WDM transmission tests with PM-QPSK modulation at 28 Gbaud up to 4800 km. The packaged core is very compact with dimensions of 6 mm × 8 mm.


Optics Express | 2012

Experimental investigation of the equalization-enhanced phase noise in long haul 56 Gbaud DP-QPSK systems

Qunbi Zhuge; Xian Xu; Ziad A. El-Sahn; Mohammad E. Mousa-Pasandi; Mohamed Morsy-Osman; Mathieu Chagnon; Meng Qiu; David V. Plant

We experimentally demonstrate the impact of equalization-enhanced phase noise (EEPN) on the performance of 56 Gbaud dual-polarization (DP) QPSK long haul transmission systems. Although EEPN adds additional noise to the received symbols, we show that this reduces the phase variance introduced by the LO laser, and therefore should be considered when designing the carrier phase recovery (CPR) algorithms and estimating system performance. Further, we experimentally demonstrate the performance degradation caused by EEPN when a LO laser with a large linewidth is used at the receiver. When using a 2.6 MHz linewidth distributed feedback (DFB) laser instead of a ~100 kHz linewidth external-cavity laser (ECL) as a LO, the transmission distance is reduced from 4160 km to 2640 km due to EEPN. We also confirm the reduction of the phase variance of the received symbols for longer transmission distances showing its impact on the CPR algorithm optimization when a DFB laser is used at the receiver. Finally, the relationship between the EEPN-induced penalty versus the signal baud rate and the LO laser linewidth is experimentally evaluated, and numerically validated by simulations.

Collaboration


Dive into the Mohamed Morsy-Osman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge