Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed R. Mughal is active.

Publication


Featured researches published by Mohamed R. Mughal.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits.

Sung-Chun Tang; Thiruma V. Arumugam; Xiangru Xu; Aiwu Cheng; Mohamed R. Mughal; Dong Gyu Jo; Justin D. Lathia; Dominic A. Siler; Srinivasulu Chigurupati; Xin Ouyang; Tim Magnus; Simonetta Camandola; Mark P. Mattson

The innate immune system senses the invasion of pathogenic microorganisms and tissue injury through Toll-like receptors (TLR), a mechanism thought to be limited to immune cells. We now report that neurons express several TLRs, and that the levels of TLR2 and -4 are increased in neurons in response to IFN-γ stimulation and energy deprivation. Neurons from both TLR2 knockout and -4 mutant mice were protected against energy deprivation-induced cell death, which was associated with decreased activation of a proapoptotic signaling cascade involving jun N-terminal kinase and the transcription factor AP-1. TLR2 and -4 expression was increased in cerebral cortical neurons in response to ischemia/reperfusion injury, and the amount of brain damage and neurological deficits caused by a stroke were significantly less in mice deficient in TLR2 or -4 compared with WT control mice. Our findings establish a proapoptotic signaling pathway for TLR2 and -4 in neurons that may render them vulnerable to ischemic death.


Nature Medicine | 2006

Gamma secretase–mediated Notch signaling worsens brain damage and functional outcome in ischemic stroke

Thiruma V. Arumugam; Sic L. Chan; Dong Gyu Jo; Gokhan Yilmaz; Sung-Chun Tang; Aiwu Cheng; Marc Gleichmann; Eitan Okun; Vishwa D. Dixit; Srinivasulu Chigurupati; Mohamed R. Mughal; Xin Ouyang; Lucio Miele; Tim Magnus; Suresh Poosala; D. Neil Granger; Mark P. Mattson

Mice transgenic for antisense Notch and normal mice treated with inhibitors of the Notch-activating enzyme γ-secretase showed reduced damage to brain cells and improved functional outcome in a model of focal ischemic stroke. Notch endangers neurons by modulating pathways that increase their vulnerability to apoptosis, and by activating microglial cells and stimulating the infiltration of proinflammatory leukocytes. These findings suggest that Notch signaling may be a therapeutic target for treatment of stroke and related neurodegenerative conditions.


Experimental Neurology | 2008

Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid β-peptide and the membrane lipid peroxidation product 4-hydroxynonenal

Sung-Chun Tang; Justin D. Lathia; Pradeep K. Selvaraj; Dong Gyu Jo; Mohamed R. Mughal; Aiwu Cheng; Dominic A. Siler; William R. Markesbery; Thiruma V. Arumugam; Mark P. Mattson

The innate immune system senses the invasion of pathogenic microorganisms and tissue injury through Toll-like receptors (TLR), a mechanism thought to be limited to immune cells. We recently found that neurons express several TLRs, and that the levels of TLR2 and TLR4 are increased in neurons in response to energy deprivation. Here we report that TLR4 expression increases in neurons when exposed to amyloid beta-peptide (Abeta1-42) or the lipid peroxidation product 4-hydroxynonenal (HNE). Neuronal apoptosis triggered by Abeta and HNE was mediated by jun N-terminal kinase (JNK); neurons from TLR4 mutant mice exhibited reduced JNK and caspase-3 activation and were protected against apoptosis induced by Abeta and HNE. Levels of TLR4 were decreased in inferior parietal cortex tissue specimens from end-stage AD patients compared to aged-matched control subjects, possibly as the result of loss of neurons expressing TLR4. Our findings suggest that TLR4 signaling increases the vulnerability of neurons to Abeta and oxidative stress in AD, and identify TLR4 as a potential therapeutic target for AD.


Brain Research | 2008

Females exhibit more extensive amyloid, but not tau, pathology in an Alzheimer transgenic model

Chiho Hirata-Fukae; Hui Fang Li; Hyang Sook Hoe; Audrey J. Gray; S. Sakura Minami; Katsuyoshi Hamada; Takako Niikura; Fang Hua; Hiroe Tsukagoshi-Nagai; Yuko Horikoshi-Sakuraba; Mohamed R. Mughal; G. William Rebeck; Frank M. LaFerla; Mark P. Mattson; Nobuhisa Iwata; Takaomi C. Saido; William L. Klein; Karen Duff; Paul S. Aisen; Yasuji Matsuoka

Epidemiological studies indicate that women have a higher risk of Alzheimers disease (AD) even after adjustment for age. Though transgenic mouse models of AD develop AD-related amyloid beta (Abeta) and/or tau pathology, gender differences have not been well documented in these models. In this study, we found that female 3xTg-AD transgenic mice expressing mutant APP, presenilin-1 and tau have significantly more aggressive Abeta pathology. We also found an increase in beta-secretase activity and a reduction of neprilysin in female mice compared to males; this suggests that a combination of increased Abeta production and decreased Abeta degradation may contribute to higher risk of AD in females. In contrast to significantly more aggressive Abeta pathology in females, gender did not affect the levels of phosphorylated tau in 3xTg-AD mice. These results point to the involvement of Abeta pathways in the higher risk of AD in women. In addition to comparison of pathology between genders at 9, 16 and 23 months of age, we examined the progression of Abeta pathology at additional age points; i.e., brain Abeta load, intraneuronal oligomeric Abeta distribution and plaque load, in male 3xTg-AD mice at 3, 6, 9, 12, 16, 20 and 23 months of age. These findings confirm progressive Abeta pathology in 3xTg-AD transgenic mice, and provide guidance for their use in therapeutic research.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death

Thiruma V. Arumugam; Sung-Chun Tang; Justin D. Lathia; Aiwu Cheng; Mohamed R. Mughal; Srinivasulu Chigurupati; Tim Magnus; Sic L. Chan; Dong Gyu Jo; Xin Ouyang; David P. Fairlie; Daniel Neil Granger; Alexander Vortmeyer; Milan Basta; Mark P. Mattson

Stroke is among the three leading causes of death worldwide and the most frequent cause of permanent disability. Brain ischemia induces an inflammatory response involving activated complement fragments. Here we show that i.v. Ig (IVIG) treatment, which scavenges complement fragments, protects brain cells against the deleterious effects of experimental ischemia and reperfusion (I/R) and prevents I/R-induced mortality in mice. Animals administered IVIG either 30 min before ischemia or after 3 h of reperfusion exhibited a 50–60% reduction of brain infarct size and a 2- to 3-fold improvement of the functional outcome. Even a single low dose of IVIG given after stroke was effective. IVIG was protective in the nonreperfusion model of murine stroke as well and did not exert any peripheral effects. Human IgG as well as intrinsic murine C3 levels were significantly higher in the infarcted brain region compared with the noninjured side, and their physical association was demonstrated by immuno-coprecipitation. C5-deficient mice were significantly protected from I/R injury compared with their wild-type littermates. Exposure of cultured neurons to oxygen/glucose deprivation resulted in increased levels of C3 associated with activation of caspase 3, a marker of apoptosis; both signals were attenuated with IVIG treatment. Our data suggest a major role for complement-mediated cell death in ischemic brain injury and the prospect of using IVIG in relatively low doses as an interventional therapy for stroke.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis

Eitan Okun; Kathleen J. Griffioen; Boaz Barak; Nicholas J. Roberts; Kamilah Castro; Mario A. Pita; Aiwu Cheng; Mohamed R. Mughal; Ruiqian Wan; Uri Ashery; Mark P. Mattson

Toll-like receptors (TLRs) are innate immune receptors that have recently emerged as regulators of neuronal survival and developmental neuroplasticity. Adult TLR3-deficient mice exhibited enhanced hippocampus-dependent working memory in the Morris water maze, novel object recognition, and contextual fear-conditioning tasks. In contrast, TLR3-deficient mice demonstrated impaired amygdala-related behavior and anxiety in the cued fear-conditioning, open field, and elevated plus maze tasks. Further, TLR3-deficient mice exhibited increased hippocampal CA1 and dentate gyrus volumes, increased hippocampal neurogenesis, and elevated levels of the AMPA receptor subunit GluR1 in the CA1 region of the hippocampus. In addition, levels of activated forms of the kinase ERK and the transcription factor CREB were elevated in the hippocampus of TLR3-deficient mice, suggesting that constitutive TLR3 signaling negatively regulates pathways known to play important roles in hippocampal plasticity. Direct activation of TLR3 by intracerebroventricular infusion of a TLR3 ligand impaired working memory, but not reference memory. Our findings reveal previously undescribed roles for TLR3 as a suppressor of hippocampal cellular plasticity and memory retention.


PLOS Biology | 2009

β1 Integrin Maintains Integrity of the Embryonic Neocortical Stem Cell Niche

Karine Loulier; Justin D. Lathia; Véronique Marthiens; Jenne Relucio; Mohamed R. Mughal; Sung-Chun Tang; Turhan Coksaygan; Peter E. Hall; Srinivasulu Chigurupati; Bruce L. Patton; Holly Colognato; Mahendra S. Rao; Mark P. Mattson; Tarik F. Haydar; Charles ffrench-Constant

IInteractions between laminins and integrin receptors hold neural stem cells in place at the ventricular surface of embryonic brain. Transient disruption leads to abnormal stem cell divisions and permanent cortical malformation.


The Journal of Neuroscience | 2010

Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals.

Ilias Kazanis; Justin D. Lathia; Eric Raborn; Ruiqian Wan; Mohamed R. Mughal; D. Mark Eckley; Takako Sasaki; Bruce L. Patton; Mark P. Mattson; Karen K. Hirschi; Mary E. Dickinson; Charles ffrench-Constant

The subependymal zone (SEZ) of the lateral ventricles is one of the areas of the adult brain where new neurons are continuously generated from neural stem cells (NSCs), via rapidly dividing precursors. This neurogenic niche is a complex cellular and extracellular microenvironment, highly vascularized compared to non-neurogenic periventricular areas, within which NSCs and precursors exhibit distinct behavior. Here, we investigate the possible mechanisms by which extracellular matrix molecules and their receptors might regulate this differential behavior. We show that NSCs and precursors proceed through mitosis in the same domains within the SEZ of adult male mice—albeit with NSCs nearer ependymal cells—and that distance from the ventricle is a stronger limiting factor for neurogenic activity than distance from blood vessels. Furthermore, we show that NSCs and precursors are embedded in a laminin-rich extracellular matrix, to which they can both contribute. Importantly, they express differential levels of extracellular matrix receptors, with NSCs expressing low levels of α6β1 integrin, syndecan-1, and lutheran, and in vivo blocking of β1 integrin selectively induced the proliferation and ectopic migration of precursors. Finally, when NSCs are activated to reconstitute the niche after depletion of precursors, expression of laminin receptors is upregulated. These results indicate that the distinct behavior of adult NSCs and precursors is not necessarily regulated via exposure to differential extracellular signals, but rather via intrinsic regulation of their interaction with their microenvironment.


The Journal of Neuroscience | 2008

Toll-Like Receptor 3 Is a Negative Regulator of Embryonic Neural Progenitor Cell Proliferation

Justin D. Lathia; Eitan Okun; Sung-Chun Tang; Kathleen J. Griffioen; Aiwu Cheng; Mohamed R. Mughal; Gloria Laryea; Pradeep K. Selvaraj; Charles ffrench-Constant; Tim Magnus; Thiruma V. Arumugam; Mark P. Mattson

Toll-like receptors (TLRs) play important roles in innate immunity. Several TLR family members have recently been shown to be expressed by neurons and glial cells in the adult brain, and may mediate responses of these cells to injury and infection. To address the possibility that TLRs play a functional role in development of the nervous system, we analyzed the expression of TLRs during different stages of mouse brain development and assessed the role of TLRs in cell proliferation. TLR3 protein is present in brain cells in early embryonic stages of development, and in cultured neural stem/progenitor cells (NPC). NPC from TLR3-deficient embryos formed greater numbers of neurospheres compared with neurospheres from wild-type embryos. Numbers of proliferating cells, as assessed by phospho histone H3 and proliferating cell nuclear antigen labeling, were also increased in the developing cortex of TLR3-deficient mice compared with wild-type mice in vivo. Treatment of cultured embryonic cortical neurospheres with a TLR3 ligand (polyIC) significantly reduced proliferating (BrdU-labeled) cells and neurosphere formation in wild type but not TLR3−/−-derived NPCs. Our findings reveal a novel role for TLR3 in the negative regulation of NPC proliferation in the developing brain.


Journal of Neurochemistry | 2010

Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia

Tae Gen Son; Simonetta Camandola; Thiruma V. Arumugam; Roy G. Cutler; Richard Telljohann; Mohamed R. Mughal; Tyson A. Moore; Weiming Luo; Qian Sheng Yu; Delinda A. Johnson; Jeffrey A. Johnson; Mark P. Mattson

J. Neurochem. (2010) 112, 1316–1326.

Collaboration


Dive into the Mohamed R. Mughal's collaboration.

Top Co-Authors

Avatar

Mark P. Mattson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Thiruma V. Arumugam

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung-Chun Tang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar

Aiwu Cheng

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sic L. Chan

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Simonetta Camandola

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge