Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed Soliman Elshikh is active.

Publication


Featured researches published by Mohamed Soliman Elshikh.


Journal of Colloid and Interface Science | 2017

A highly sensitive and selective electrochemical determination of non-steroidal prostate anti-cancer drug nilutamide based on f-MWCNT in tablet and human blood serum sample

Raj Karthik; Ragu Sasikumar; Shen-Ming Chen; J. Vinoth Kumar; A. Elangovan; V. Muthuraj; P. Muthukrishnan; Fahad M.A. Al-Hemaid; M. Ajmal Ali; Mohamed Soliman Elshikh

A novel electrochemical sensor based on the functionalized multiwalled carbon nanotube (f-MWCNT) was successfully developed for the sensitive and selective determination of non-steroidal prostate anti-cancer drug nilutamide in tablet and blood serum samples. The f-MWCNT was prepared by the simple reflux method and characterized by the scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, X-ray powder diffraction (XRD) and fourier transform infrared spectroscopy (FT-IR). Interestingly, the f-MWCNT was exhibited a superior electrocatalytic activity towards the anti-cancer drug nilutamide when compared with pristine MWCNT and unmodified electrodes. Besides, the electrochemical sensor was revealed an excellent current response for the determination of nilutamide with wide linear ranges (0.01-21μM and 28-535μM), high sensitivity (11.023 and 1.412μA μM-1cm2) and very low detection limit (LOD) 0.2nM. The developed electrochemical sensor was showed an excellent selectivity even in the presence of electrochemically active biological substances and nitro aromatic compounds. Moreover, it manifested a good reproducibility and stability. In addition, the f-MWCNT modified glassy carbon electrode (GCE) sensor was successfully applied for the detection of nilutamide in tablet and blood serum sample.


Frontiers in Physiology | 2017

Salicylic Acid-Regulated Antioxidant Mechanisms and Gene Expression Enhance Rosemary Performance under Saline Conditions

Mohamed El-Esawi; Hosam O. Elansary; Nader A. El-Shanhorey; Amal M. E. Abdel-Hamid; Hayssam M. Ali; Mohamed Soliman Elshikh

Salinity stress as a major agricultural limiting factor may influence the chemical composition and bioactivity of Rosmarinus officinallis L. essential oils and leaf extracts. The application of salicylic acid (SA) hormone may alleviate salinity stress by modifying the chemical composition, gene expression and bioactivity of plant secondary metabolites. In this study, SA was applied to enhance salinity tolerance in R. officinallis. R. officinallis plants were subjected to saline water every 2 days (640, 2,000, and 4,000 ppm NaCl) and 4 biweekly sprays of SA at 0, 100, 200, and 300 ppm for 8 weeks. Simulated salinity reduced all vegetative growth parameters such as plant height, plant branches and fresh and dry weights. However, SA treatments significantly enhanced these plant growth and morphological traits under salinity stress. Salinity affected specific major essential oils components causing reductions in α-pinene, β-pinene, and cineole along with sharp increases in linalool, camphor, borneol, and verbenone. SA applications at 100–300 ppm largely reversed the effects of salinity. Interestingly, SA treatments mitigated salinity stress effects by increasing the total phenolic, chlorophyll, carbohydrates, and proline contents of leaves along with decline in sodium and chloride. Importantly, this study also proved that SA may stimulate the antioxidant enzymatic mechanism pathway including catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX) as well as increasing the non-enzymatic antioxidants such as free and total ascorbate in plants subjected to salinity. Quantitative real-time PCR analysis revealed that APX and 3 SOD genes showed higher levels in SA-treated rosemary under salinity stress, when compared to non-sprayed plants. Moreover, the expression level of selected genes conferring tolerance to salinity (bZIP62, DREB2, ERF3, and OLPb) were enhanced in SA-treated rosemary under salt stress, indicating that SA treatment resulted in the modulation of such genes expression which in turn enhanced rosemary tolerance to salinity stress.


Genes | 2018

Analysis of the Genetic Diversity and Population Structure of Austrian and Belgian Wheat Germplasm within a Regional Context Based on DArT Markers

Mohamed El-Esawi; Jacques Witczak; Abd El-Fatah Abomohra; Hayssam M. Ali; Mohamed Soliman Elshikh; Margaret Ahmad

Analysis of crop genetic diversity and structure provides valuable information needed to broaden the narrow genetic base as well as to enhance the breeding and conservation strategies of crops. In this study, 95 Austrian and Belgian wheat cultivars maintained at the Centre for Genetic Resources (CGN) in the Netherlands were characterised using 1052 diversity array technology (DArT) markers to evaluate their genetic diversity, relationships and population structure. The rarefacted allelic richness recorded in the Austrian and Belgian breeding pools (A25 = 1.396 and 1.341, respectively) indicated that the Austrian germplasm contained a higher genetic diversity than the Belgian pool. The expected heterozygosity (HE) values of the Austrian and Belgian pools were 0.411 and 0.375, respectively. Moreover, the values of the polymorphic information content (PIC) of the Austrian and Belgian pools were 0.337 and 0.298, respectively. Neighbour-joining tree divided each of the Austrian and Belgian germplasm pools into two genetically distinct groups. The structure analyses of the Austrian and Belgian pools were in a complete concordance with their neighbour-joining trees. Furthermore, the 95 cultivars were compared to 618 wheat genotypes from nine European countries based on a total of 141 common DArT markers in order to place the Austrian and Belgian wheat germplasm in a wider European context. The rarefacted allelic richness (A10) varied from 1.224 (Denmark) to 1.397 (Austria). Cluster and principal coordinates (PCoA) analyses divided the wheat genotypes of the nine European countries into two main clusters. The first cluster comprised the Northern and Western European wheat genotypes, whereas the second included the Central European cultivars. The structure analysis of the 618 European wheat genotypes was in a complete concordance with the results of cluster and PCoA analyses. Interestingly, a highly significant difference was recorded between regions (26.53%). In conclusion, this is the first study to reveal the high diversity levels and structure of the uncharacterised Austrian and Belgian wheat germplasm maintained at the CGN as well as place them in a wider European context. The results should help plant breeders to utilise the most promising wheat genotypes of this study in future breeding programmes for enhancing wheat cultivars.


Evidence-based Complementary and Alternative Medicine | 2018

Bioactivities of Traditional Medicinal Plants in Alexandria

Hosam O. Elansary; Agnieszka Szopa; Paweł Kubica; Halina Ekiert; Hayssam M. Ali; Mohamed Soliman Elshikh; Eslam Abdel-Salam; Mohamed El-Esawi; Diaa O. El-Ansary

In traditional folklore, medicinal herbs play a vital role in the prevention and treatment of microbial diseases. In the present study, the phenolic profiles of the medicinal plants Asparagus aethiopicus L., Citrullus colocynthis L., Senna alexandrina L., Kalanchoe delagoensis L., Gasteria pillansii L., Cymbopogon citratus, Brassica juncea, and Curcuma longa L. were determined by high-performance liquid chromatography with a diode-array detector method. The results revealed rich sources of important compounds such as robinin in the fruits and leaves of A. aethiopicus; caffeic acid in the tubers of A. aethiopicus and quercitrin in the leaves of G. pillansii. Further, relatively high antioxidant, antibacterial, and antifungal activities were observed in C. colocynthis fruit coat, S. alexandrina pods, and A. aethiopicus leaves, respectively. The relatively higher the bioactivities of plants extracts associated with the phenols in these plants, in particular, the more abundant the phenols. Therefore, it was concluded that the fruit coat of C. colocynthis, pods of S. alexandrina, and leaves of A. aethiopicus might be excellent sources of natural products. These plant extracts also have a wide spectrum of antimicrobial activities that could be used in the pharmaceutical industries and to control diseases.


Inorganic chemistry frontiers | 2018

Hierarchically structured CuFe2O4 ND@RGO composite for the detection of oxidative stress biomarker in biological fluids

Shen-Ming Chen; Rajaji Umamaheswari; Govindasamy Mani; Tse-Wei Chen; M. Ajmal Ali; Al-Hemaid Fahad; Mohamed Soliman Elshikh; M. Abul Farah

In this work, stable and catalytically active copper ferrite nanodots (CuFe2O4) entrapped by porous RGO nanosheets were prepared via a facile condensation process using a green reducing agent. The composite was characterized by HR-TEM, EDX, XRD, Raman, TGA, and electrochemical methods. Oxidative stress caused by the imbalance between oxidants and antioxidant defenses is implicated in many pathological conditions including age-related disorders, cancer, and cardiovascular, inflammatory, neurodegenerative and neuropsychiatric diseases. 3-Nitrotyrosine is an electrochemically active biomarker of oxidative stress; hence its electrochemical determination is useful to set up a sensitive analytical tool for oxidative stress measurement. The electrocatalytic activities of a CuFe2O4@RGO composite modified electrode toward 3-nitrotyrosine were studied in detail. A rapid, sensitive, selective and reproducible electrochemical sensing platform was developed for the detection and quantification of 3-nitrotyrosine under neutral pH conditions. Remarkably, the limit of detection was found to be 25.14 pM, which surpassed the detection limits of many existing analytical methods. The practical applicability of the method was demonstrated in human urine and blood serum samples.


Oxidative Medicine and Cellular Longevity | 2017

Genetic Transformation and Hairy Root Induction Enhance the Antioxidant Potential of Lactuca serriola L.

Mohamed El-Esawi; Amr Elkelish; Hosam O. Elansary; Hayssam M. Ali; Mohamed Soliman Elshikh; Jacques Witczak; Margaret Ahmad

Lactuca serriola L. is a herbaceous species, used for human nutrition and medicinal purposes. The high antioxidant capacity of L. serriola indicates the possibility of enhancing its edible and health potential by increasing the flavonoid and phenolic contents. The present study aimed at enhancing the production of phenolics and flavonoids by hairy root cultures in Lactuca serriola transformed with Agrobacterium rhizogenes strain AR15834 harbouring the rolB gene. The genetic transformation of rolB in transformed roots was validated, and rolB expression level was evaluated using real-time qPCR analysis. Expression levels of flavonoid biosynthesis genes (CHI, PAL, FLS, and CHS) were assessed in the hairy and nontransformed roots. Results showed higher expression levels in the transgenic roots than in the nontransformed ones (p < 0.01). Transgenic hairy roots exhibited a 54.8–96.7% increase in the total phenolic content, 38.1–76.2% increase in the total flavonoid content, and 56.7–96.7% increase in the total reducing power when compared with the nontransgenic roots (p < 0.01). DPPH results also revealed that the transgenic hairy roots exhibited a 31.6–50% increase in antioxidant potential, when compared to normal roots. This study addressed the enhancement of secondary metabolite biosynthesis by hairy root induction in L. serriola.


Analytica Chimica Acta | 2018

Detection of Pesticide Residues (Fenitrothion) in Fruit Samples Based On Niobium Carbide@Molybdenum Nanocomposite: An Electrocatalytic Approach

Mani Govindasamy; Umamaheswari Rajaji; Shen-Ming Chen; Sakthivel Kumaravel; Tse-Wei Chen; Fahad M.A. Al-Hemaid; M. Ajmal Ali; Mohamed Soliman Elshikh

We have reported an effective electrochemical sensor for assorted pesticide (i.e., Fenitrothion). Exact tracking of these pesticides has become more important for protecting the environment and food resources owing to their high toxicity. Hence, the development of compatible sensors for the real-time detection of pesticides is imperative to overcome practical limitations encountered in conventional methodologies. In this regard, the role of the novel, advanced functional materials such as niobium carbide (NbC) supported on molybdenum nanoparticles (NbC@Mo) has drawn great consideration in conventional sensory systems because of their numerous advantages over other nanomaterials. The nanocomposite was characterized by XRD, XPS, HR-TEM, and EIS. Under optimized working conditions, the modified electrode NbC@Mo/SPCE responds linearly as 0.01-1889 μM concentration range and the detection limit is 0.15 nM. Most importantly, the method was successfully demonstrated in fruit samples.


Journal of Colloid and Interface Science | 2017

Development of electrochemical sensor for the determination of palladium ions (Pd(2+)) using flexible screen printed un-modified carbon electrode.

Murugan Velmurugan; Balamurugan Thirumalraj; Shen-Ming Chen; Fahad M.A. Al-Hemaid; M. Ajmal Ali; Mohamed Soliman Elshikh

To date, the development of different modified electrodes have received much attention in electrochemistry. The modified electrodes have some drawbacks such as high cost, difficult to handle and not eco friendly. Hence, we report an electrochemical sensor for the determination of palladium ions (Pd2+) using an un-modified screen printed carbon electrode has been developed for the first time, which are characterized and studied via scanning electron microscope and cyclic voltammetry. Prior to determination of Pd2+ ions, the operational conditions of un-modified SPCE was optimized using cyclic voltammetry and showed excellent electro-analytical behavior towards the determination of Pd2+ ions. Electrochemical determination of Pd2+ ions reveal that the un-modified electrode showed lower detection limit of 1.32μM with a linear ranging from 3 to 133.35μM towards the Pd2+ ions concentration via differential pulse voltammetry. The developed sensor also applied to the successfully determination of trace level Pd2+ ions in spiked water samples. In addition, the advantage of this type of electrode is simple, disposable and cost effective in electrochemical sensors.


Journal of AOAC International | 2017

Investigation of the Virulence Factors and Molecular Characterization of the Clonal Relations of Multidrug-Resistant Acinetobacter baumannii Isolates.

Megeed Aa; Hayssam Ma; Mohamed Z.M. Salem; Mohamed Soliman Elshikh; Talea Ia; Alogaibi Ya

Multidrug-resistant (MDR) Acinetobacter baumannii infections are a great public health concern and demand continuous surveillance and antibiotic stewardship. Virulence traits and the pathogenicity of Acinetobacter are less studied compared with the molecular epidemiological and antibiotic resistance profile of this organism. In our present study, we investigated the primary characteristics contributing to the virulence of MDR A. baumannii isolates and compared them with avirulent isolates. A total of 32 well-characterized MDR A. baumannii clinical isolates and 22 avirulent isolates from a healthy individual were subjected to multilocus sequence typing and polymerase chain reaction (PCR) for a variety of biofilm-associated genes. Additionally, a number of in vitro tests were performed to determine virulence properties. Isolates were found to relate to six sequence types (STs) in which the dominant sequence was ST557 in clinical isolates, followed by ST195 and ST208. However, ST557 and ST222 were absent in avirulent isolates. All STs belonged to clonal complex 2 and clonal lineage 2, which is considered to be a universal clone. PCR analysis showed that most clinical isolates were positive for biofilm-forming genes, such as csu and bap, and also carried pga and ompA genes, which were less common in avirulent isolates. Biofilm formation, phospholipase C production, hemolytic activity, and acinetobactin production occurred significantly more frequently in clinical isolates compared with avirulent isolates. Though A. baumannii clonal lineages showed common virulence traits, they differed in virulent phenotype expression. These findings further support previous studies indicating that A. baumannii is a versatile pathogen with an ability to acquire iron and survive in iron-limiting conditions, highlighting the acinetobactin-mediated iron acquisition mechanisms involved in the pathogenesis of A. baumannii infections.


Ultrasonics Sonochemistry | 2019

Sonochemically recovered silver oxide nanoparticles from the wastewater of photo film processing units as an electrode material for supercapacitor and sensing of 2, 4, 6-trichlorophenol in agricultural soil samples

Elanthamilan Elaiyappillai; Sakthivel Kogularasu; Shen-Ming Chen; Muthumariappan Akilarasan; Christy Ezhilarasi Joshua; Princy Merlin Johnson; M. Ajmal Ali; Fahad M.A. Al-Hemaid; Mohamed Soliman Elshikh

The present work describes the sensing application and supercapacitive behavior of silver oxide nanoparticles recovered from wastewater of photo film processing units via one-pot green sonochemical recovery process. The recovered silver oxide nanoparticles (Ag2O NPs) were characterized by spectral techniques such as FT-IR, Raman, UV-Vis and analytical tools such as XRD, FE-SEM, TEM, EDX, XPS and BET. In view of Ag2O NPs as electrode material with wide technological applications, the recovered Ag2O NPs were examined for their sensing and supercapacitive behavior. The developed sensor was explored to detect 2, 4, 6-trichlorophenol, and as expected it shows moral parameters which are required of an effective sensor. Therefore, it was exploited for the quantification of 2, 4, 6-trichlorophenol in soil samples from the agricultural area. Cyclic voltammetric (CV), Galvanostatic Charge-Discharge (GCD) and Electrochemical Impedance Spectroscopic (EIS) studies on the recovered Ag2O NPs coated Ni foam electrode depicted the pronounced capacitive behavior. The GCD studies revealed an enhanced electrochemical performance, particularly with the large specific capacitance of 530 F/g at a current density of 1 A/g. The cyclic stability of the electrode material was identified with 88% retention in specific capacitance even after 5000 GCD cycles. These results strongly proved that the recovered Ag2O NPs are potential candidates for sensing and supercapacitor applications.

Collaboration


Dive into the Mohamed Soliman Elshikh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shen-Ming Chen

National Taipei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Tse-Wei Chen

National Taipei University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mani Govindasamy

National Taipei University of Technology

View shared research outputs
Top Co-Authors

Avatar

Umamaheswari Rajaji

National Taipei University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge