Mohamed Trigui
University of Sfax
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohamed Trigui.
International Journal of Food Microbiology | 2011
Anis Ben Hsouna; Mohamed Trigui; Riadh Ben Mansour; Raoudha Jarraya; Mohamed Damak; Samir Jaoua
The present study describes the phytochemical profile and the protective effects of Ceratonia siliqua pods essential oil (CsEO), a food and medicinal plant widely distributed in Tunisia. Twenty five different components were identified in the CsEO. Among them, the major detected components were: Nonadecane, Heneicosane , Naphthalene, 1,2-Benzenedicarboxylic acid dibutylester, Heptadecane, Hexadecanoic acid, Octadecanoic acid, 1,2-Benzenedicarboxylic acid, Phenyl ethyl tiglate, Eicosene, Farnesol 3, Camphor, Nerolidol and n-Eicosane. The antimicrobial activity of CsEO was evaluated against a panel of 13 bacteria and 8 fungal strains using agar diffusion and broth microdilution methods. Results have shown that CsEO exhibited moderate to strong antimicrobial activity against the tested species. In addition, the inhibitory effect of this CsEO was evaluated in vivo against a foodborne pathogens Listeria monocytogenes, experimentally inoculated in minced beef meat (2×10(2) CFU/g of meat) amended with different concentrations of the CsEO and stored at 7 °C for 10 days. The antibacterial activity of CsEO in minced beef meat was clearly evident and its presence led to a strong inhibitory effect against the pathogens at 7 °C. On the other hand, the cytotoxic effects of the essential oil against two tumoral human cell lines HeLa and MCF-7 were examined by MTT assay. The CsEO showed an inhibition of both cell lines with significantly stronger activity against HeLa cells. The IC(50) values were 210 and 800 μg/ml for HeLa and MCF-7 cells, respectively. Overall, results presented here suggest that the EO of C. siliqua possesses antimicrobial and cytotoxic properties, and is therefore a potential source of active ingredients for food and pharmaceutical industry.
Food and Chemical Toxicology | 2011
Anis Ben Hsouna; Mongi Saoudi; Mohamed Trigui; Kamel Jamoussi; Tahia Boudawara; Samir Jaoua; Abdelfattah El Feki
Ceratonia siliqua is a typical Mediterranean plant, mainly used in food and Tunisian traditional folk medicine. Among the tested extracts, the ethyl acetate fraction (EACs) exhibited the highest total phenolic and flavonoids content. The antioxidant activity in vitro systems showed a more significant potent free radical scavenging activity of this extract than other analysis fractions. The HPLC finger print of EACs active extract showed the presence of six phenolic compounds. The in vivo results showed that oral administration of CCl(4) enhanced levels of hepatic and renal markers (ALT, AST, ALP, LDH, γ-GT, urea and creatinine) in the serum of experimental animals. It also increased the oxidative stress markers resulting in increased levels of the lipid peroxidation with a concomitant decrease in the levels of enzymatic antioxidants (SOD, CAT, GPx) in both liver and kidney. The pre-treatment of experimental rats with 250 mg/kg (BW) of the EACs, by intraperitoneal injection for 8 days, prevented CCl(4) induced disorders in the levels of hepatic and kidney markers. The biochemical changes were in accordance with histopathological observations suggesting a marked hepatoprotective and nephroprotective effect of the EACs extract.
Meat Science | 2017
Dhekra Mhalla; Amira Bouaziz; Karim Ennouri; Rachid Chawech; Slim Smaoui; Raoudha Jarraya; Slim Tounsi; Mohamed Trigui
This study was undertaken to investigate the antibacterial and antifungal activities of Rumex tingitanus leaves extracts as well as the identification of bioactive components and their performance in meat preservation. Total phenolics and flavonoids showed the highest content of phenolics and flavonoids in the ethyl acetate fraction (Rt EtOAcF). For antimicrobial efficacy, leaves extract and derived fraction were tested for their capacity to inhibit bacterial and fungal proliferation in vitro and in vivo. The ethyl acetate fraction showed the most potent antibacterial and antifungal activities compared to the others extracts. Thus, the efficacy of this extract to inhibit the proliferation of Listeria monocytogenes in minced beef meat model was examined. This fraction eradicates the L. monocytogenes population in meat in a concentration- and time-dependent manner. A bio-guided purification of the Rt EtOAc fraction resulted in the isolation of the compound responsible for the observed antimicrobial activity. This compound was identified as luteolin by analysis of spectroscopic data. CHEMICAL COMPOUNDS ISOLATED IN THIS ARTICLE Luteolin (PubChem CID: 5280445); p-iodonitrotetrazolium chloride (PubChem CID: 64957); Amphotericin B (PubChem CID: 5280965); Gentamicin and (PubChem CID: 6419933); Hexane (PubChem CID: 8058); Methanol (PubChem CID: 887); Ethanol (PubChem CID: 702); Dimethylsulfoxide (PubChem CID: 679); Quercetin (PubChem CID: 5280343); Gallic acid (PubChem CID: 370).
Toxicology and Industrial Health | 2016
Anis Ben Hsouna; Saoudi Mongi; Gérald Culioli; Yves Blache; Zohra Ghlissi; Rim Chaabane; Abdelfattah El Feki; Samir Jaoua; Mohamed Trigui
This study aimed to investigate the antioxidant properties of different fractions obtained from the fruits of Lawsonia inermis, a widely used medicinal plant, against carbon tetrachloride (CCl4)-induced oxidative stress in rat liver. The results show that several fractions obtained from L. inermis fruits possessed important antioxidant activity. Among them, the ethyl acetate (EA) fraction showed the highest antioxidant activity. Then, EA fraction was selected for the purification of potential antioxidant compounds. The hepatoprotective effects of EA fraction and its most active constituent, gallic acid (GA), were evaluated against CCl4-induced hepatotoxicity in rats. CCl4 induced oxidative stress by a significant rise in serum marker enzymes. However, pretreatment of rats with EA fraction of fruits of L. inermis at a dose of 250 mg kg−1 body weight and GA significantly lowered some serum biochemical parameters (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase) in treated rats. A significant reduction in hepatic thiobarbituric acid reactive substances and an increase in antioxidant enzymes namely superoxide dismutase, catalase, and glutathione peroxidase by treatment with plant extract and GA, against CCl4-treated rats, were observed. Histopathological examinations showed extensive liver injuries, characterized by extensive hepatocellular necrosis, vacuolization, and inflammatory cell infiltration. This potential antioxidant activity is comparable to those of the major purified antioxidant compound, GA. Based on these results, it was observed that fruits of L. inermis protect liver from oxidative stress induced by CCl4 and thus help in evaluation of traditional claim on this plant.
Toxicology and Industrial Health | 2012
Mongi Saoudi; Anis Ben Hsouna; Mohamed Trigui; Kamel Jamoussi; Samir Jaoua; Abdelfattah El Feki
Methanol is primarily metabolized by oxidation to formaldehyde and then to formate. These processes are accompanied by formation of superoxide anion and hydrogen peroxide. This article reports data on the effect of methanol-induced oxidative damage in experimental rats and the role of aqueous extract of Opuntia vulgaris fruit extract (OE) to counteract the toxicity induced by methanol. The animals were exposed to methanol at a dose of 2.37 g/kg body weight intraperitoneally for 30 days. OE was found to contain large amounts of polyphenols and carotenoids and significant antioxidant capacities highlighted by scavenging activities for 2,2-diphenyl-l-picrylhydrazyl. The treatment with methanol exhibited a significant increase in serum hepatic and renal biochemical parameters (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, bilirubin, urea, and creatinine). Methanol intoxication significantly increased hepatic and renal lipid peroxidation evaluated by thiobarbituric acid reactive substances in treated rats as compared to controls. However, hepatic and renal antioxidant enzymes namely superoxide dismutase, catalase, and glutathione peroxidase were significantly decreased in methanol-treated animals as compared to controls. The results concluded that treatment with OE prior to methanol intoxication has significant role in protecting animals from methanol-induced hepatic and renal histopathological and oxidative damage.
Microbiological Research | 2017
Fatma Masmoudi; Saoussen Ben Khedher; Amel Kamoun; Slim Tounsi; Mohamed Trigui
This work is directed towards Bacillus amyloliquefaciens strain BLB371 metabolite production for biocontrol of fungal phytopathogens. In order to maximise antifungal metabolite production by this strain, two approaches were combined: random mutagenesis and medium component optimization. After three rounds of mutagenesis, a hyper active mutant, named M3-7, was obtained. It produces 7 fold more antifungal metabolites (1800AU/mL) than the wild strain in MC medium. A hybrid design was applied to optimise a new medium to enhance antifungal metabolite production by M3-7. The new optimized medium (35g/L of peptone, 32.5g/L of sucrose, 10.5g/L of yeast extract, 2.4g/L of KH2PO4, 1.3g/L of MgSO4 and 23mg/L of MnSO4) achieved 1.62 fold enhancement in antifungal compound production (3000AU/mL) by this mutant, compared to that achieved in MC medium. Therefore, combinatory effect of these two approaches (mutagenesis and medium component optimization) allowed 12 fold improvement in antifungal activity (from 250UA/mL to 3000UA/mL). This improvement was confirmed against several phytopathogenic fungi with an increase of MIC and MFC over than 50%. More interestingly, a total eradication of gray mold was obtained on tomato fruits infected by Botrytis cinerea and treated by M3-7, compared to those treated by BLB371. From the practical point of view, combining random mutagenesis and medium optimization could be considered as an excellent tool for obtaining promising biological products useful against phytopathogenic fungi.
BioMed Research International | 2017
Yosra Kahla; Karama Zouari-Bouassida; Fatma Rezgui; Mohamed Trigui; Slim Tounsi
This research investigated the Eucalyptus cinerea leaves efficiency in the Agrobacterium tumefaciens biocontrol, the causative agent of crown gall. GC-MS analysis of the essential oil (EO) showed that the main components were 1,8-cineole (61%) and camphene (15.13%). Thanks to its polyphenols, flavonoids, quinones, terpenoids, alkaloids, and tannins richness, the EtOAc-F exhibited the most potent antibacterial activity in vitro. Indeed, compared to the other fractions, it has the lowest MIC and MBC values of 0.312 mg/mL and 2.5 mg/mL, respectively. The GC-MS analysis of EtOAc-F confirmed its richness in antibacterial compounds including gallic acid (7.18%), shikimic acid (5.07%), and catechin (3.12%). The time-kill curve assay of EtOAc-F (2.5 mg/mL) showed a potent bactericidal effect after 20 min of direct contact with A. tumefaciens. In planta experiments, gall weights were significantly reduced when EtOAc-F was applied at 0.625 and 2.5 mg/wounds. Besides, the disease reduction rates in gall weight were 95% and 97.5%, respectively. Interestingly, no phytotoxic effect was observed since tomato seeds germinated in the presence of the different concentrations of EtOAc-F. These results suggest that EtOAc-F has a good potential to be a curative biocontrol agent for crown gall disease.
Heterocyclic Communications | 2015
Oussama Cherif; Fatma Masmoudi; Fatma Allouche; Fakher Chabchoub; Mohamed Trigui
Abstract An efficient synthesis of new pyrrolopyrimidinones 3a-d and isoxazolopyrimidinones 4a-c from the respective aminocyanopyrroles 1a-d and aminocyanoisoxazoles 2a-c is presented. The synthesized compounds were screened for antimicrobial activity against a panel of bacteria and fungi. Compound 4c exhibits remarkable activity against a broad spectrum of Gram-positive and Gram-negative bacteria and pathogenic fungi.
BioMed Research International | 2018
Dhekra Mhalla; Dalel ben Farhat-Touzri; Slim Tounsi; Mohamed Trigui
The increasing insect resistance against Bacillus thuringiensis delta-endotoxins is a serious problem which makes it urgent to look for new eco-friendly strategies. Combining these toxins with other biomolecules is one of the promising strategies against insect pests. In this work, we evaluated the bioinsecticidal potential of Rumex tingitanus extracts and B. thuringiensis strain BLB250 against Spodoptera littoralis (Lepidoptera: Noctuidae) larvae. The chemical composition of the hexane extract, the most active fraction, was analyzed to validate the correlation between chemical composition and biological activity. Among the tested extracts, only the hexanic extract showed toxicity against first and second instar larvae with LC50 of 2.56 and 2.95 mg g−1, respectively. The Bacillus thuringiensis BLB250 delta-endotoxins showed toxicity with an LC50 of 56.3 μg g−1. Therefore, the investigated combinational effect of BLB250 delta-endotoxins and R. tingitanus hexane extract proved significant synergistic effect against S. littoralis larvae. The GC-MS analysis of R. tingitanus hexane extract showed the richness of this extract in phytosterols such as β and γ-sitosterol (48.91%), campesterol (6.43%), and β-amyrin (8.92%) which are known for their insecticidal activity. This novel finding highlights the potential use of this combination against insect pests to prevent the appearance of resistance problems.
BioMed Research International | 2018
Dhekra Mhalla; Karama Zouari Bouassida; Rachid Chawech; Amira Bouaziz; Samar Makni; Lobna Jlaiel; Slim Tounsi; Raoudha Mezghani Jarraya; Mohamed Trigui
Over the last few decades, Rumex species have been recognized as a promising source of new compounds with numerous pharmacological activities. Therefore, the antioxidant activity of Rumex tingitanus (R. tingitanus) leaves extracts was evaluated in vitro and then confirmed in vivo as well as the antidepressant-like and toxicological effects of the extracts. The ethyl acetate fraction (Rt EtOAcF) followed by hydroalcoholic extract (Rt EtOH-H2O) showed a remarkable in vitro antioxidant activity. The hydroalcoholic extract (Rt EtOH-H2O) showed significant hepatoprotective activity against carbon tetrachloride- (CCl4-) induced liver toxicity which is seen from inhibition of the malondialdehyde (MDA) accumulation and enhancement of the liver antioxidant enzymes activities. The Rt EtOH-H2O and Rt EtOAcF extracts were able to reduce the immobility time in mice and then elicited a significant antidepressant-like effect. The ethyl acetate fraction (Rt EtOAcF) was purified and resulted in the identification of a new antioxidant component called 4′-p-acetylcoumaroyl luteolin. The Rt EtOAcF and the 4′-p-acetylcoumaroyl luteolin revealed a strong antioxidant activity using DPPH test with IC50 of 11.7 ± 0.2 and 20.74 ± 0.6 μg/ml, respectively, and AAI of 3.39 and 1.92 better than that of BHT, used as control.