Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohamed Yassine Amarouch is active.

Publication


Featured researches published by Mohamed Yassine Amarouch.


Journal of the American College of Cardiology | 2012

Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy.

Gabriel Laurent; Samuel Saal; Mohamed Yassine Amarouch; Delphine M. Béziau; Roos F. Marsman; Laurence Faivre; Julien Barc; Christian Dina; Géraldine Bertaux; Olivier Barthez; Christel Thauvin-Robinet; Philippe Charron; Véronique Fressart; Alice Maltret; Elisabeth Villain; Estelle Baron; Jean Mérot; Rodolphe Turpault; Yves Coudière; Flavien Charpentier; Jean-Jacques Schott; Gildas Loussouarn; Arthur A.M. Wilde; Jean-Eric Wolf; Isabelle Baró; Florence Kyndt; Vincent Probst

OBJECTIVES The aim of this study was to describe a new familial cardiac phenotype and to elucidate the electrophysiological mechanism responsible for the disease. BACKGROUND Mutations in several genes encoding ion channels, especially SCN5A, have emerged as the basis for a variety of inherited cardiac arrhythmias. METHODS Three unrelated families comprising 21 individuals affected by multifocal ectopic Purkinje-related premature contractions (MEPPC) characterized by narrow junctional and rare sinus beats competing with numerous premature ventricular contractions with right and/or left bundle branch block patterns were identified. RESULTS Dilated cardiomyopathy was identified in 6 patients, atrial arrhythmias were detected in 9 patients, and sudden death was reported in 5 individuals. Invasive electrophysiological studies demonstrated that premature ventricular complexes originated from the Purkinje tissue. Hydroquinidine treatment dramatically decreased the number of premature ventricular complexes. It normalized the contractile function in 2 patients. All the affected subjects carried the c.665G>A transition in the SCN5A gene. Patch-clamp studies of resulting p.Arg222Gln (R222Q) Nav1.5 revealed a net gain of function of the sodium channel, leading, in silico, to incomplete repolarization in Purkinje cells responsible for premature ventricular action potentials. In vitro and in silico studies recapitulated the normalization of the ventricular action potentials in the presence of quinidine. CONCLUSIONS A new SCN5A-related cardiac syndrome, MEPPC, was identified. The SCN5A mutation leads to a gain of function of the sodium channel responsible for hyperexcitability of the fascicular-Purkinje system. The MEPPC syndrome is responsive to hydroquinidine.


Biochemical Pharmacology | 2012

TRPM4 channels in the cardiovascular system: Physiology, pathophysiology, and pharmacology

Hugues Abriel; Ninda Ratna Maharani Syam; Valentin Sottas; Mohamed Yassine Amarouch; Jean-Sébastien Rougier

The transient receptor potential channel (TRP) family comprises at least 28 genes in the human genome. These channels are widely expressed in many different tissues, including those of the cardiovascular system. The transient receptor potential channel melastatin 4 (TRPM4) is a Ca(2+)-activated non-specific cationic channel, which is impermeable to Ca(2+). TRPM4 is expressed in many cells of the cardiovascular system, such as cardiac cells of the conduction pathway and arterial and venous smooth muscle cells. This review article summarizes the recently described roles of TRPM4 in normal physiology and in various disease states. Genetic variants in the human gene TRPM4 have been linked to several cardiac conduction disorders. TRPM4 has also been proposed to play a crucial role in secondary hemorrhage following spinal cord injuries. Spontaneously hypertensive rats with cardiac hypertrophy were shown to over-express the cardiac TRPM4 channel. Recent studies suggest that TRPM4 plays an important role in cardiovascular physiology and disease, even if most of the molecular and cellular mechanisms have yet to be elucidated. We conclude this review article with a brief overview of the compounds that have been shown to either inhibit or activate TRPM4 under experimental conditions. Based on recent findings, the TRPM4 channel can be proposed as a future target for the pharmacological treatment of cardiovascular disorders, such as hypertension and cardiac arrhythmias.


Circulation-cardiovascular Genetics | 2014

Gain-of-function mutation of the SCN5A gene causes exercise-induced polymorphic ventricular arrhythmias.

Heikki Swan; Mohamed Yassine Amarouch; Jaakko Leinonen; Annukka Marjamaa; Jan P. Kucera; Päivi J. Laitinen-Forsblom; Annukka M. Lahtinen; Aarno Palotie; Kimmo Kontula; Lauri Toivonen; Hugues Abriel; Elisabeth Widen

Background—Over the past 15 years, a myriad of mutations in genes encoding cardiac ion channels and ion channel interacting proteins have been linked to a long list of inherited atrial and ventricular arrhythmias. The purpose of this study was to identify the genetic and functional determinants underlying exercise-induced polymorphic ventricular arrhythmia present in a large multigenerational family. Methods and Results—A large 4-generation family presenting with exercise-induced polymorphic ventricular arrhythmia, which was followed for 10 years, was clinically characterized. A novel SCN5A mutation was identified via whole exome sequencing and further functionally evaluated by patch-clamp studies using human embryonic kidney 293 cells. Of 37 living family members, a total of 13 individuals demonstrated ≥50 multiformic premature ventricular complexes or ventricular tachycardia upon exercise stress tests when sinus rate exceeded 99±17 beats per minute. Sudden cardiac arrest occurred in 1 individual during follow-up. Exome sequencing identified a novel missense mutation (p.I141V) in a highly conserved region of the SCN5A gene, encoding the Nav1.5 sodium channel protein that cosegregated with the arrhythmia phenotype. The mutation p.I141V shifted the activation curve toward more negative potentials and increased the window current, whereas action potential simulations suggested that it lowered the excitability threshold of cardiac cells. Conclusions—Gain-of-function of Nav1.5 may cause familial forms of exercise-induced polymorphic ventricular arrhythmias.


Biophysical Journal | 2010

Phosphatidylinositol-4,5-Bisphosphate (PIP2) Stabilizes the Open Pore Conformation of the Kv11.1 (hERG) Channel

Nicolas Rodriguez; Mohamed Yassine Amarouch; Jérôme Montnach; Julien Piron; Alain J. Labro; Flavien Charpentier; Jean Mérot; Isabelle Baró; Gildas Loussouarn

Phosphatidylinositol-4,5-bisphosphate (PIP(2)) is a phospholipid that has been shown to modulate several ion channels, including some voltage-gated channels like Kv11.1 (hERG). From a biophysical perspective, the mechanisms underlying this regulation are not well characterized. From a physiological perspective, it is critical to establish whether the PIP(2) effect is within the physiological concentration range. Using the giant-patch configuration of the patch-clamp technique on COS-7 cells expressing hERG, we confirmed the activating effect of PIP(2). PIP(2) increased the hERG maximal current and concomitantly slowed deactivation. Regarding the molecular mechanism, these increased amplitude and slowed deactivation suggest that PIP(2) stabilizes the channel open state, as it does in KCNE1-KCNQ1. We used kinetic models of hERG to simulate the effects of the phosphoinositide. Simulations strengthened the hypothesis that PIP(2) is more likely stabilizing the channel open state than affecting the voltage sensors. From the physiological aspect, we established that the sensitivity of hERG to PIP(2) comes close to that of KCNE1-KCNQ1 channels, which lies in the range of physiological PIP(2) variations.


Nano Letters | 2015

Force-controlled patch clamp of beating cardiac cells.

Dario Ossola; Mohamed Yassine Amarouch; Pascal Behr; Janos Vörös; Hugues Abriel; Tomaso Zambelli

From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.


International Journal of Cardiology | 2016

Targeted resequencing identifies TRPM4 as a major gene predisposing to progressive familial heart block type I

Xavier Daumy; Mohamed Yassine Amarouch; Pierre Lindenbaum; Stéphanie Bonnaud; Eric Charpentier; Beatrice Bianchi; Sabine Naomi Nafzger; Estelle Baron; Swanny Fouchard; Aurélie Thollet; Florence Kyndt; Julien Barc; Solena Le Scouarnec; Naomasa Makita; Hervé Le Marec; Christian Dina; Jean-Baptiste Gourraud; Vincent Probst; Hugues Abriel; Richard Redon; Jean-Jacques Schott

BACKGROUND Progressive cardiac conduction disease (PCCD) is one of the most common cardiac conduction disturbances. It has been causally related to rare mutations in several genes including SCN5A, SCN1B, TRPM4, LMNA and GJA5. METHODS AND RESULTS In this study, by applying targeted next-generation sequencing (NGS) in 95 unrelated patients with PCCD, we have identified 13 rare variants in the TRPM4 gene, two of which are currently absent from public databases. This gene encodes a cardiac calcium-activated cationic channel which precise role and importance in cardiac conduction and disease is still debated. One novel variant, TRPM4-p.I376T, is carried by the proband of a large French 4-generation pedigree. Systematic familial screening showed that a total of 13 family members carry the mutation, including 10 out of the 11 tested affected individuals versus only 1 out of the 21 unaffected ones. Functional and biochemical analyses were performed using HEK293 cells, in whole-cell patch-clamp configuration and Western blotting. TRPM4-p.I376T results in an increased current density concomitant to an augmented TRPM4 channel expression at the cell surface. CONCLUSIONS This study is the first extensive NGS-based screening of TRPM4 coding variants in patients with PCCD. It reports the third largest pedigree diagnosed with isolated Progressive Familial Heart Block type I and confirms that this subtype of PCCD is caused by mutation-induced gain-of-expression and function of the TRPM4 ion channel.


Journal of the American Heart Association | 2016

Variants of Transient Receptor Potential Melastatin Member 4 in Childhood Atrioventricular Block

Ninda Ratna Maharani Syam; Stéphanie Chatel; Lijo Cherian Ozhathil; Valentin Sottas; Jean-Sébastien Rougier; Alban Baruteau; Estelle Baron; Mohamed Yassine Amarouch; Xavier Daumy; Vincent Probst; Jean-Jacques Schott; Hugues Abriel

Background Transient receptor potential melastatin member 4 (TRPM4) is a nonselective cation channel. TRPM4 mutations have been linked to cardiac conduction disease and Brugada syndrome. The mechanisms underlying TRPM4‐dependent conduction slowing are not fully understood. The aim of this study was to characterize TRPM4 genetic variants found in patients with congenital or childhood atrioventricular block. Methods and Results Ninety‐one patients with congenital or childhood atrioventricular block were screened for candidate genes. Five rare TRPM4 genetic variants were identified and investigated. The variants were expressed heterologously in HEK293 cells. Two of the variants, A432T and A432T/G582S, showed decreased expression of the protein at the cell membrane; inversely, the G582S variant showed increased expression. Further functional characterization of these variants using whole‐cell patch‐clamp configuration showed a loss of function and a gain of function, respectively. We hypothesized that the observed decrease in expression was caused by a folding and trafficking defect. This was supported by the observation that incubation of these variants at lower temperature partially rescued their expression and function. Previous studies have suggested that altered SUMOylation of TRPM4 may cause a gain of function; however, we did not find any evidence that supports SUMOylation as being directly involved for the gain‐of‐function variant. Conclusions This study underpins the role of TRPM4 in the cardiac conduction system. The loss‐of‐function variants A432T/G582S found in 2 unrelated patients with atrioventricular block are most likely caused by misfolding‐dependent altered trafficking. The ability to rescue this variant with lower temperature may provide a novel use of pharmacological chaperones in treatment strategies.


PLOS ONE | 2014

A Long QT Mutation Substitutes Cholesterol for Phosphatidylinositol-4,5-Bisphosphate in KCNQ1 Channel Regulation

Fabien Coyan; Fayal Abderemane-Ali; Mohamed Yassine Amarouch; Julien Piron; Jérôme Mordel; Céline Nicolas; Marja Steenman; Jean Mérot; Céline Marionneau; Annick Thomas; Robert Brasseur; Isabelle Baró; Gildas Loussouarn

Introduction Phosphatidylinositol-4,5-bisphosphate (PIP2) is a cofactor necessary for the activity of KCNQ1 channels. Some Long QT mutations of KCNQ1, including R243H, R539W and R555C have been shown to decrease KCNQ1 interaction with PIP2. A previous study suggested that R539W is paradoxically less sensitive to intracellular magnesium inhibition than the WT channel, despite a decreased interaction with PIP2. In the present study, we confirm this peculiar behavior of R539W and suggest a molecular mechanism underlying it. Methods and Results COS-7 cells were transfected with WT or mutated KCNE1-KCNQ1 channel, and patch-clamp recordings were performed in giant-patch, permeabilized-patch or ruptured-patch configuration. Similar to other channels with a decreased PIP2 affinity, we observed that the R243H and R555C mutations lead to an accelerated current rundown when membrane PIP2 levels are decreasing. As opposed to R243H and R555C mutants, R539W is not more but rather less sensitive to PIP2 decrease than the WT channel. A molecular model of a fragment of the KCNQ1 C-terminus and the membrane bilayer suggested that a potential novel interaction of R539W with cholesterol stabilizes the channel opening and hence prevents rundown upon PIP2 depletion. We then carried out the same rundown experiments under cholesterol depletion and observed an accelerated R539W rundown that is consistent with this model. Conclusions We show for the first time that a mutation may shift the channel interaction with PIP2 to a preference for cholesterol. This de novo interaction wanes the sensitivity to PIP2 variations, showing that a mutated channel with a decreased affinity to PIP2 could paradoxically present a slowed current rundown compared to the WT channel. This suggests that caution is required when using measurements of current rundown as an indicator to compare WT and mutant channel PIP2 sensitivity.


Frontiers in Physiology | 2015

Cellular hyper-excitability caused by mutations that alter the activation process of voltage-gated sodium channels

Mohamed Yassine Amarouch; Hugues Abriel

Voltage-gated sodium channels (Nav) are widely expressed as macro-molecular complexes in both excitable and non-excitable tissues. In excitable tissues, the upstroke of the action potential is the result of the passage of a large and rapid influx of sodium ions through these channels. NaV dysfunction has been associated with an increasingly wide range of neurological, muscular and cardiac disorders. The purpose of this review is to summarize the recently identified sodium channel mutations that are linked to hyper-excitability phenotypes and associated with the alteration of the activation process of voltage gated sodium channels. Indeed, several clinical manifestations that demonstrate an alteration of tissue excitability were recently shown to be strongly associated with the presence of mutations that affect the activation process of the Nav. These emerging genotype-phenotype correlations have expanded the clinical spectrum of sodium channelopathies to include disorders which feature a hyper-excitability phenotype that may or may not be associated with a cardiomyopathy. The p.I141V mutation in SCN4A and SCN5A, as well as its homologous p.I136V mutation in SCN9A, are interesting examples of mutations that have been linked to inherited hyperexcitability myotonia, exercise-induced polymorphic ventricular arrhythmias and erythromelalgia, respectively. Regardless of which sodium channel isoform is investigated, the substitution of the isoleucine to valine in the locus 141 induces similar modifications in the biophysical properties of the Nav by shifting the voltage-dependence of steady state activation toward more negative potentials.


Annals of Noninvasive Electrocardiology | 2016

Antiarrhythmic Action of Flecainide in Polymorphic Ventricular Arrhythmias Caused by a Gain-of-Function Mutation in the Nav1.5 Sodium Channel

Mohamed Yassine Amarouch; Heikki Swan; Jaakko Leinonen; Annukka Marjamaa; Annukka M. Lahtinen; Kimmo Kontula; Lauri Toivonen; Elisabeth Widen; Hugues Abriel

The cardiac sodium channel Nav1.5, encoded by the gene SCN5A, is associated with a wide spectrum of hereditary arrhythmias. The gain‐of‐function mutation p.I141V in SCN5A was identified in a large multigenerational family with exercise‐induced polymorphic ventricular arrhythmias. The purpose of this study was to evaluate the molecular and clinical effects of flecainide administration on patients with this syndrome.

Collaboration


Dive into the Mohamed Yassine Amarouch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Jacques Schott

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Vincent Probst

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge