Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad A. Ghatei is active.

Publication


Featured researches published by Mohammad A. Ghatei.


Nature | 2002

Gut hormone PYY3-36 physiologically inhibits food intake

Rachel L. Batterham; Michael Cowley; Caroline J. Small; Herbert Herzog; Mark A. Cohen; Catherine Louise Dakin; Alison M. Wren; Audrey E. Brynes; Malcolm J. Low; Mohammad A. Ghatei; Roger D. Cone; Stephen R. Bloom

Food intake is regulated by the hypothalamus, including the melanocortin and neuropeptide Y (NPY) systems in the arcuate nucleus. The NPY Y2 receptor (Y2R), a putative inhibitory presynaptic receptor, is highly expressed on NPY neurons in the arcuate nucleus, which is accessible to peripheral hormones. Peptide YY3-36 (PYY3-36), a Y2R agonist, is released from the gastrointestinal tract postprandially in proportion to the calorie content of a meal. Here we show that peripheral injection of PYY3-36 in rats inhibits food intake and reduces weight gain. PYY3-36 also inhibits food intake in mice but not in Y2r-null mice, which suggests that the anorectic effect requires the Y2R. Peripheral administration of PYY3-36 increases c-Fos immunoreactivity in the arcuate nucleus and decreases hypothalamic Npy messenger RNA. Intra-arcuate injection of PYY3-36 inhibits food intake. PYY3-36 also inhibits electrical activity of NPY nerve terminals, thus activating adjacent pro-opiomelanocortin (POMC) neurons. In humans, infusion of normal postprandial concentrations of PYY3-36 significantly decreases appetite and reduces food intake by 33% over 24 h. Thus, postprandial elevation of PYY3-36 may act through the arcuate nucleus Y2R to inhibit feeding in a gut–hypothalamic pathway.


Annals of Surgery | 2006

Gut Hormone Profiles Following Bariatric Surgery Favor an Anorectic State, Facilitate Weight Loss, and Improve Metabolic Parameters

Carel W. le Roux; Simon Aylwin; Rachel L. Batterham; C Borg; Frances Coyle; Vyas Prasad; Sandra Shurey; Mohammad A. Ghatei; Ameet G. Patel; Stephen R. Bloom

Objective:To study the effect of bariatric surgery on the entero-hypothalamic endocrine axis of humans and rodents. Background:Bariatric surgery is the most effective obesity treatment as it achieves substantial and sustained weight loss. Glycemic control and enhanced satiation improve before substantial weight loss occurs. Gut peptides, acting both peripherally and centrally, contribute to glycemic control and regulate food intake. Methods:We examined meal-stimulated responses of insulin, ghrelin, peptide YY (PYY), glucagon-like-peptide-1 (GLP-1), and pancreatic polypeptide (PP) in humans and rodents following different bariatric surgical techniques. Results:Compared with lean and obese controls, patients following Roux-en-Y gastric bypass (RYGB) had increased postprandial plasma PYY and GLP-1 favoring enhanced satiety. Furthermore, RYGB patients had early and exaggerated insulin responses, potentially mediating improved glycemic control. None of these effects were observed in patients losing equivalent weight through gastric banding. Leptin, ghrelin, and PP were similar in both the surgical groups. Using a rodent model of jejuno-intestinal bypass (JIB), we showed elevated PYY and GLP-1 in JIB rats compared with sham-operated rats. Moreover, exogenous PYY reduced food intake and blockade of endogenous PYY increased food intake. Thus, higher plasma PYY following JIB may contribute to reduced food intake and contribute to weight loss. Conclusions:Following RYGB and JIB, a pleiotropic endocrine response may contribute to the improved glycemic control, appetite reduction, and long-term changes in body weight.


Annals of Surgery | 2007

Gut hormones as mediators of appetite and weight loss after roux-en-Y gastric bypass

Carel W. le Roux; Richard Welbourn; Malin Werling; Alan Osborne; Alexander Kokkinos; Anna Laurenius; Hans Lönroth; Lars Fändriks; Mohammad A. Ghatei; Stephen R. Bloom; Torsten Olbers

Objective:To evaluate the physiologic importance of the satiety gut hormones. Background:Controversy surrounds the physiologic role of gut hormones in the control of appetite. Bariatric surgery remains the most effective treatment option for obesity, and gut hormones are implicated in the reduction of appetite and weight after Roux-en-Y gastric bypass. Methods:We correlated peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) changes within the first week after gastric bypass with changes in appetite. We also evaluated the gut hormone responses of patients with good or poor weight loss after gastric bypass. Finally, we inhibited the gut hormone responses in gastric bypass patients and then evaluated appetite and food intake. Results:Postprandial PYY and GLP-1 profiles start rising as early as 2 days after gastric bypass (P < 0.05). Changes in appetite are evident within days after gastric bypass surgery (P < 0.05), and unlike other operations, the reduced appetite continues. However, in patients with poor weight loss after gastric bypass associated with increased appetite, the postprandial PYY and GLP-1 responses are attenuated compared with patients with good weight loss (P < 0.05). Inhibiting gut hormone responses, including PYY and GLP-1 after gastric bypass, results in return of appetite and increased food intake (P < 0.05). Conclusion:The attenuated appetite after gastric bypass is associated with elevated PYY and GLP-1 concentrations, and appetite returns when the release of gut hormones is inhibited. The results suggest a role for gut hormones in the mechanism of weight loss after gastric bypass and may have implications for the treatment of obesity.


Brain Research | 2005

The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway.

Caroline R. Abbott; Caroline J. Small; Arshia Sajedi; Kirsty L. Smith; James R.C. Parkinson; Mohammad A. Ghatei; Stephen R. Bloom

The vagus nerve forms a neuro-anatomical link between the gastrointestinal tract and the brain. A number of gastrointestinal hormones, including cholecystokinin and ghrelin, require an intact vagal-brainstem-hypothalamic pathway to affect CNS feeding circuits. We have shown that the effects of peripheral administration of both peptide YY(3-36) (PYY(3-36)) and glucagon-like peptide-1 (GLP-1) on food intake and activation of hypothalamic arcuate feeding neurones are abolished following either bilateral sub-diaphragmatic total truncal vagotomy or brainstem-hypothalamic pathway transectioning in rodents. These findings suggest that the vagal-brainstem-hypothalamic pathway may also play a role in the effects of circulating PYY(3-36) and GLP-1 on food intake.


Gut | 2005

Ghrelin enhances gastric emptying in diabetic gastroparesis: a double blind, placebo controlled, crossover study

Charles Murray; Niamh M. Martin; Michael Patterson; Stuart A. Taylor; Mohammad A. Ghatei; Michael A. Kamm; Colin Johnston; Stephen R. Bloom; Anton Emmanuel

Background: Diabetic gastroparesis is a disabling condition with no consistently effective treatment. In animals, ghrelin increases gastric emptying and reverses postoperative ileus. We present the results of a double blind, placebo controlled, crossover study of ghrelin in gastric emptying in patients with diabetic gastroparesis. Methods: Ten insulin requiring diabetic patients (five men, six type I) referred with symptoms indicative of gastroparesis received a two hour infusion of either ghrelin (5 pmol/kg/min) or saline on two occasions. Blood glucose was controlled by euglycaemic clamp. Gastric emptying rate (GER) was calculated by real time ultrasound following a test meal. Blood was sampled for ghrelin, growth hormone (GH), and pancreatic polypeptide (PP) levels. Cardiovagal neuropathy was assessed using the Mayo Clinic composite autonomic severity score (range 0 (normal)–3). Results: Baseline ghrelin levels were mean 445 (SEM 36) pmol/l. Ghrelin infusion achieved a peak plasma level of 2786 (188) pmol/l at 90 minutes, corresponding to a peak GH of 70.9 (19.8) pmol/l. Ghrelin increased gastric emptying in seven of 10 patients (30 (6)% to 43 (5)%; p = 0.04). Impaired cardiovagal tone correlated inversely with peak postprandial PP values (p<0.05) but did not correlate with GER. Conclusions: Ghrelin increases gastric emptying in patients with diabetic gastroparesis. This is independent of vagal tone. We propose that analogues of ghrelin may represent a new class of prokinetic agents.


Endocrinology | 1999

Repeated intracerebroventricular administration of glucagon-like peptide-1-(7-36) amide or exendin-(9-39) alters body weight in the rat.

Karim Meeran; Donal O’Shea; C. Mark B. Edwards; Mandy D. Turton; M. M. Heath; Irene Gunn; Salahedeen Abusnana; Michela Rossi; Caroline J. Small; Anthony P. Goldstone; Gillian M. Taylor; David Sunter; Joanna Steere; Sang Jeon Choi; Mohammad A. Ghatei; Stephen R. Bloom

Central nervous system glucagon-like peptide-1-(7-36) amide (GLP-1) administration has been reported to acutely reduce food intake in the rat. We here report that repeated intracerebroventricular (i.c.v.) injection of GLP-1 or the GLP-1 receptor antagonist, exendin-(9-39), affects food intake and body weight. Daily i.c.v. injection of 3 nmol GLP-1 to schedule-fed rats for 6 days caused a reduction in food intake and a decrease in body weight of 16 +/- 5 g (P < 0.02 compared with saline-injected controls). Daily i.c.v. administration of 30 nmol exendin-(9-39) to schedule-fed rats for 3 days caused an increase in food intake and increased body weight by 7 +/- 2 g (P < 0.02 compared with saline-injected controls). Twice daily i.c.v. injections of 30 nmol exendin-(9-39) with 2.4 nmol neuropeptide Y to ad libitum-fed rats for 8 days increased food intake and increased body weight by 28 +/- 4 g compared with 14 +/- 3 g in neuropeptide Y-injected controls (P < 0.02). There was no evidence of tachyphylaxis in response to i.c.v. GLP-1 or exendin-(9-39). GLP-1 may thus be involved in the regulation of body weight in the rat.Central nervous system glucagon-like peptide-1-(7–36) amide (GLP-1) administration has been reported to acutely reduce food intake in the rat. We here report that repeated intracerebroventricular (icv) injection of GLP-1 or the GLP-1 receptor antagonist, exendin-(9–39), affects food intake and body weight. Daily icv injection of 3 nmol GLP-1 to schedule-fed rats for 6 days caused a reduction in food intake and a decrease in body weight of 16 ± 5 g (P < 0.02 compared with saline-injected controls). Daily icv administration of 30 nmol exendin-(9–39) to schedule-fed rats for 3 days caused an increase in food intake and increased body weight by 7 ± 2 g (P < 0.02 compared with saline-injected controls). Twice daily icv injections of 30 nmol exendin-(9–39) with 2.4 nmol neuropeptide Y to ad libitum-fed rats for 8 days increased food intake and increased body weight by 28 ± 4 g compared with 14 ± 3 g in neuropeptide Y-injected controls (P < 0.02). There was no evidence of tachyphylaxis in response to icv GLP-1 o...


Journal of Clinical Investigation | 1997

Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice.

Rohit N. Kulkarni; Zhi-Li Wang; Ren-Ming Wang; James D. Hurley; David M. Smith; Mohammad A. Ghatei; Dominic J. Withers; James Gardiner; Cliff J. Bailey; S. R. Bloom

Obesity is associated with diabetes, and leptin is known to be elevated in obesity. To investigate whether leptin has a direct effect on insulin secretion, isolated rat and human islets and cultured insulinoma cells were studied. In all cases, mouse leptin inhibited insulin secretion at concentrations within the plasma range reported in humans. Insulin mRNA expression was also suppressed in the cultured cells and rat islets. The long form of the leptin receptor (OB-Rb) mRNA was present in the islets and insulinoma cell lines. To determine the significance of these findings in vivo, normal fed mice were injected with two doses of leptin. A significant decrease in plasma insulin and associated rise in glucose concentration were observed. Fasted normal and leptin receptor-deficient db/db mice showed no response to leptin. A dose of leptin, which mimicked that found in normal mice, was administered to leptin-deficient, hyperinsulinemic ob/ob mice. This caused a marked lowering of plasma insulin concentration and a doubling of plasma glucose. Thus, leptin has a powerful acute inhibitory effect on insulin secretion. These results suggest that the action of leptin may be one mechanism by which excess adipose tissue could acutely impair carbohydrate metabolism.


Endocrinology | 2012

The Role of Bile After Roux-en-Y Gastric Bypass in Promoting Weight Loss and Improving Glycaemic Control

Dimitri J. Pournaras; Clare Glicksman; Royce P Vincent; Shophia Kuganolipava; Jamie Alaghband-Zadeh; David Mahon; Jan H.R. Bekker; Mohammad A. Ghatei; Stephen R. Bloom; Julian R. Walters; Richard Welbourn; Carel W. le Roux

Gastric bypass leads to the remission of type 2 diabetes independently of weight loss. Our hypothesis is that changes in bile flow due to the altered anatomy may partly explain the metabolic outcomes of the operation. We prospectively studied 12 patients undergoing gastric bypass and six patients undergoing gastric banding over a 6-wk period. Plasma fibroblast growth factor (FGF)19, stimulated by bile acid absorption in the terminal ileum, and plasma bile acids were measured. In canine and rodent models, we investigated changes in the gut hormone response after altered bile flow. FGF19 and total plasma bile acids levels increased after gastric bypass compared with no change after gastric banding. In the canine model, both food and bile, on their own, stimulated satiety gut hormone responses. However, when combined, the response was doubled. In rats, drainage of endogenous bile into the terminal ileum was associated with an enhanced satiety gut hormone response, reduced food intake, and lower body weight. In conclusion, after gastric bypass, bile flow is altered, leading to increased plasma bile acids, FGF19, incretin. and satiety gut hormone concentrations. Elucidating the mechanism of action of gastric bypass surgery may lead to novel treatments for type 2 diabetes.


Journal of Clinical Investigation | 1995

Glucagon-like peptide-1 is a physiological incretin in rat.

Zhili Wang; Ren Ming Wang; A. A. Owji; David M. Smith; Mohammad A. Ghatei; Stephen R. Bloom

Glucagon-like peptide-1 7-36 amide (GLP-1) has been postulated to be the primary hormonal mediator of the entero-insular axis but evidence has been indirect. The discovery of exendin (9-39), a GLP-1 receptor antagonist, allowed this to be further investigated. The IC50 for GLP-1 receptor binding, using RIN 5AH beta-cell membranes, was found to be 0.36 nmol/l for GLP-1 and 3.44 nmol/l for exendin (9-39). There was no competition by exendin (9-39) at binding sites for glucagon or related peptides. In the anaesthetized fasted rat, insulin release after four doses of GLP-1 (0.1, 0.2, 0.3, and 0.4 nmol/kg) was tested by a 2-min intravenous infusion. Exendin (9-39) (1.5, 3.0, and 4.5 nmol/kg) was administered with GLP-1 0.3 nmol/kg, or saline, and only the highest dose fully inhibited insulin release. Exendin (9-39) at 4.5 nmol/kg had no effect on glucose, arginine, vasoactive intestinal peptide or glucose-dependent insulinotropic peptide stimulated insulin secretion. Postprandial insulin release was studied in conditioned conscious rats after a standard meal. Exendin (9-39) (0.5 nmol/kg) considerably reduced postprandial insulin concentrations, for example by 48% at 15 min (431 +/- 21 pmol/l saline, 224 +/- 32 pmol/l exendin, P < 0.001). Thus, GLP-1 appears to play a major role in the entero-insular axis.


The FASEB Journal | 2005

Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype

Gavin A. Bewick; James Gardiner; Waljit S. Dhillo; Aysha Kent; N. E. White; Zoe Webster; Mohammad A. Ghatei; Stephen R. Bloom

Agouti‐related protein (AgRP) and neuropeptide Y (NPY) are colocalized in arcuate nucleus (arcuate) neurons implicated in the regulation of energy balance. Both AgRP and NPY stimulate food intake when administered into the third ventricle and are up‐regulated in states of negative energy balance. However, mice with targeted deletion of either NPY or AgRP or both do not have major alterations in energy homeostasis. Using bacterial artificial chromosome (BAC) transgenesis we have targeted expression of a neurotoxic CAG expanded form of ataxin‐3 to AgRP‐expressing neurons in the arcuate. This resulted in a 47% loss of AgRP neurons by 16 weeks of age, a significantly reduced body weight, (wild‐type mice (WT) 34.7±0.7 g vs. transgenic mice (Tg) 28.6±0.6 g, P<0.001), and reduced food intake (WT 5.0±0.2 vs. Tg 3.6±0.1 g per day, P<0.001). Transgenic mice had significantly reduced total body fat, plasma insulin, and increased brown adipose tissue UCP1 expression. Transgenic mice failed to respond to peripherally administered ghrelin but retained sensitivity to PYY 3‐36. These data suggest that postembryonic partial loss of AgRP/NPY neurons leads to a lean, hypophagic phenotype.

Collaboration


Dive into the Mohammad A. Ghatei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S.R. Bloom

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary Frost

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge