Mohammad A. Rafi
Thomas Jefferson University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammad A. Rafi.
Human Mutation | 1997
David A. Wenger; Mohammad A. Rafi; Paola Luzi
Galactocerebrosidase (GALC) is a lysosomal β‐galactosidase responsible for the hydrolysis of the galactosyl moiety from several galactolipids, including galactosylceramide and psychosine. The deficiency of this enzyme results in the autosomal recessive disorder called Krabbe disease. It is also called globoid cell leukodystrophy (GLD), because of the characteristic storage cells found around cerebral blood vessels in the white matter of affected human patients and animal models. Although most patients present with clinical symptoms before 6 months of age, older patients, including adults, have been diagnosed by their severe deficiency of GALC activity. More than 40 mutations have been identified in patients with all clinical types of GLD. While some mutations clearly result in the infantile type if found homozygous or with another severe mutation, it is difficult to predict the phenotype of novel mutations or when mutations are found in the heterozygous state. A high incidence of polymorphic changes on apparent disease‐causing alleles also complicates the interpretation of the effects of mutations. The detection of mutations has greatly improved carrier identification among family members and will permit preimplantation diagnosis for some families. The molecular characterization of the naturally occurring mouse, dog, and monkey models will permit their use in trials to evaluate different modes of therapy. Hum Mutat 10:268–279, 1997.
American Journal of Human Genetics | 1999
Gilles Millat; Christophe Marçais; Mohammad A. Rafi; Toshiyuki Yamamoto; Jill A. Morris; Peter G. Pentchev; Kousaku Ohno; David A. Wenger; Marie T. Vanier
Niemann-Pick type C (NPC) disease is an autosomal recessive lipid-storage disorder usually characterized by hepatosplenomegaly and severe progressive neurological dysfunction, resulting from mutations affecting either the NPC1 gene (in 95% of the patients) or the yet-to-be-identified NPC2 gene. Our initial study of 25 patients with NPC1 identified a T3182-->C transition that leads to an I1061T substitution in three patients. The mutation, located in exon 21, affects a putative transmembrane domain of the protein. PCR-based tests with genomic DNA were used to survey 115 unrelated patients from around the world with all known clinical and biochemical phenotypes of the disease. The I1061T allele constituted 33 (14.3%) of the 230 disease-causing alleles and was never found in controls (>200 alleles). The mutation was particularly frequent in patients with NPC from Western Europe, especially France (11/62 alleles) and the United Kingdom (9/32 alleles), and in Hispanic patients whose roots were in the Upper Rio Grande valley of the United States. The I1061T mutation originated in Europe and the high frequency in northern Rio Grande Hispanics results from a founder effect. All seven unrelated patients who were homozygous for the mutation and their seven affected siblings had a juvenile-onset neurological disease and severe alterations of intracellular LDL-cholesterol processing. The mutation was not found (0/40 alleles) in patients with the severe infantile neurological form of the disease. Testing for this mutation therefore has important implications for genetic counseling of families affected by NPC.
Somatic Cell and Molecular Genetics | 1993
Mohammad A. Rafi; Gregory de Gala; Xun-Ling Zhang; David A. Wenger
It is now clear that the lysosomal hydrolysis of sphingolipids requires both lysosomal enzymes and so-called sphingolipid activator proteins (SAPs). One gene, called prosaposin, codes for a precursor protein that is proteolytically cut into four putative SAPs. These four SAPs, of about 80 amino acids, share some structural features but differ somewhat in their specificity. Domain 3 of prosaposin mRNA contains the coding region for SAP-2, an activator of glucocerebrosidase. While most patients with Gaucher disease store glucosylceramide due to defects in glucocerebrosidase, a few patients store this lipid in the presence of normal enzyme levels. In this paper we describe the identification of a point mutation in domain 3 of a patient who died with this variant form of Gaucher disease. Polymerase chain reaction amplification was performed in the small amount of genomic DNA available using primers generated from the intronic sequence s surrounding domain 3. The patient was found to have a T-to-G substitution at position 1144 (counting from the A of ATG initiation codon) in half of the M13 recombinant clones. This changes the codon for cysteine382 to glycine. His father and unaffected brother also had this mutation, but his mother did not. She was found to have half of the normal amount of mRNA for prosaposin in her cultured skin fibroblasts. Therefore, this child inherited a point mutation in domain 3 from his father and a deficiency of all four SAPs coded for by prosaposin from his mother.
Molecular Therapy | 2012
Mohammad A. Rafi; Han Zhi Rao; Paola Luzi; Mark T. Curtis; David A. Wenger
Globoid cell leukodystrophy (GLD) or Krabbe disease is a neurodegenerative disorder caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). This deficiency results in accumulation of certain galactolipids including psychosine which is cytotoxic for myelin-producing cells. Treatment of human patients at this time is limited to hematopoietic stem cell transplantation (HSCT) that appears to slow the progression of the disease when performed in presymptomatic patients. In this study, adeno-associated virus (AAV) serotype rh10-(AAVrh10) expressing mouse GALC was used in treating twitcher (twi) mice, the mouse model of GLD. The combination of intracerebroventricular, intracerebellar, and intravenous (iv) injection of viral particles in neonate twi mice resulted in high GALC activity in brain and cerebellum and moderate to high GALC activity in spinal cord, sciatic nerve, and some peripheral organs. Successfully treated mice maintained their weight with no or very little twitching, living up to 8 months. The physical activities of the long-lived treated mice were comparable to wild type for most of their lives. Treated mice showed normal abilities to mate, to deliver pups, to nurse and to care for the newborns. This strategy alone or in combination with other therapeutic options may be applicable to treatment of human patients.
Biochemical and Biophysical Research Communications | 1990
Mohammad A. Rafi; Xun-Ling Zhang; Gregory DeGala; David A. Wenger
The lysosomal degradation of sulfatide requires the specific enzyme, arylsulfatase A, as well as a heat stable protein called sphingolipid activator protein-1 (SAP-1). While most patients with metachromatic leukodystrophy have defects in arylsulfatase A, some patients have defects in SAP-1. SAP-1 is coded for by a gene on human chromosome 10 that also codes for three other proposed SAP. Examination of the cDNA from two siblings with SAP-1 deficiency revealed a point mutation of nucleotide #650 (counting from the initiation ATG) which is in the SAP-1 coding domain. This C to T transition changed the codon from threonine (ACC) to one coding for isoleucine (ATC). This eliminated the only glycosylation site in mature SAP-1 and could explain the findings made at the protein level.
Molecular and Cellular Neuroscience | 2005
Mariam Zaka; Mohammad A. Rafi; Han Zhi Rao; Paola Luzi; David A. Wenger
Psychosine (galactosylsphingosine) is a toxic metabolite that accumulates in globoid cell leukodystrophy (GLD) due to the deficiency of galactocerebrosidase (GALC) activity. This results in subsequent programmed cell death of oligodendrocytes and demyelination in human patients and animal models. We investigated the potential role of insulin-like growth factor-1 (IGF-1) in modifying the apoptotic effect of psychosine in cultured mouse oligodendrocyte progenitor cells (OLP-II). We show that psychosine inhibits the phosphorylation of Akt and Erk1/Erk2 (Erk1/2), which are the main anti-apoptotic pathways of the IGF-1 receptor (IGF-1R). Although IGF-1 sustained phosphorylation of both of these pathways, it provided maximum protection to OLP-II cells from psychosine-induced cell death in a PI3K/Akt-dependent manner. The effects of IGF-1 were dose-dependent and resulted in increased IGF-1R autophosphorylation levels. Although relatively high concentrations of IGF-1 also resulted in the activation of the insulin receptor (IR), its effect was more significant on the IGF-1R.
Human Genetics | 1996
Mohammad A. Rafi; Paola Luzi; Joel Zlotogora; David A. Wenger
Infantile Krabbe disease is a severe, fatal autosomal recessive disorder resulting from the deficiency of galactocerebrosidase (GALC) activity. It is relatively common in two separate inbred communities in Israel. In the Druze community in Northern Israel and two Moslem Arab villages located near Jerusalem the incidence of Krabbe disease is about 1 in 100–150 live births. With our cloning of the GALC gene, mutation analysis of these populations was undertaken. The Moslem Arabs were homozygous for two mutations in the GALC gene; a T-to-C transition at cDNA position 1637 (counting from the A of the initiation codon), which is considered a polymorphism, and a G-to-A transition at position 1582, which changes the codon for aspartic acid to one for asparagine. The Druze patients are homozygous for a T-to-G transversion at position 1748, which changes the codon for isoleucine to one for serine. Expression studies confirmed the deleterious nature of these mutations. The development of a simple polymerase chain reaction (PCR) amplification and restriction enzyme digestion method to identify these alleles will lead to accurate carrier testing and improved genetic counseling for interested individuals in these communities.
Molecular Genetics and Metabolism | 2003
Kyra L Somers; Michael A. Royals; Eugene D. Carstea; Mohammad A. Rafi; David A. Wenger; Mary Anna Thrall
Niemann-Pick C (NPC) disease is an autosomal recessive neurovisceral lysosomal storage disorder that results in defective intracellular transport of cholesterol. The major form of human NPC (NPC1) has been mapped to chromosome 18, the NPC1 gene (NPC1) has been sequenced and several mutations have been identified in NPC1 patients. A feline model of NPC has been characterized and is phenotypically, morphologically, and biochemically similar to human NPC1. Complementation studies using cultured fibroblasts from NPC affected cats and NPC1 affected humans support that the gene responsible for the NPC phenotype in this colony of cats is orthologous to human NPC1. Using human-based PCR primers, initial fragments of the feline NPC cDNA were amplified and sequenced. From these sequences, feline-specific PCR primers were generated and designed to amplify six overlapping bands that span the entire feline NPC1 open reading frame. A single base substitution (2864G-C) was identified in NPC1 affected cats. Obligate carriers are heterozygous at the same allele and a PCR-based assay was developed to identify the geneotype of all cats in the colony. The mutation results in an amino acid change from cysteine to serine (C955S). Several of the mutations identified in people occur in the same region. Marked similarity exists between the human and feline NPC1 cDNA sequences, and is greater than that between the human and murine NPC1 sequences. The human cDNA sequence predicts a 1278aa protein with a lysosomal targeting sequence, several trans-membrane domains and extensive homology with other known mediators of cholesterol homeostasis.
Brain Research | 2009
Paola Luzi; Ronnie M. Abraham; Mohammad A. Rafi; Mark T. Curtis; D. Craig Hooper; David A. Wenger
Globoid cell leukodystrophy (GLD) or Krabbe disease is a neurodegenerative disorder caused by the deficiency of the lysosomal enzyme galactocerebrosidase (GALC). GALC deficiency results in a progressive demyelination of the central and peripheral nervous systems. Inflammatory cells and increased levels of cytokines and chemokines are present in the CNS of GLD mice and may play a significant role in the pathogenesis of the disease. In this study we evaluate the effect of non-steroidal anti-inflammatory drugs, such as indomethacin and ibuprofen, and minocycline, a tetracycline analog with neuroprotective and anti-apoptotic properties, on the progression of the disease using a transgenic mouse model of GLD. Real-time quantitative PCR was used to analyze the expression of several markers of the immune/inflammatory response. IL-6, TNF-alpha, MIP-1beta, MCP-1, iNOS/NOS2, CD11b, CD68, CD4 and CD8 mRNA levels were measured in cortex, cerebellum and spinal cord of untreated and treated affected mice at different ages. In addition, the pharmacological treatments were compared to bone marrow transplantation (BMT). The pharmacological treatments significantly extended the life-span of the treated mice and reduced the levels of several of the immuno-related factors studied. However, BMT produced the most dramatic improvements. In BMT-treated mice, factors in the spinal cord were normalized faster than the cerebellum, with the exception of CD68. There was a decrease in the number of apoptotic cells in the cerebellum of mice receiving anti-inflammatory drugs and BMT. These studies indicate a possible role for combined therapy in the treatment of GLD.
Neurobiology of Disease | 2001
Alice Luddi; M. Volterrani; Michelina Strazza; A. Smorlesi; Mohammad A. Rafi; J. Datto; David A. Wenger; Elvira Costantino-Ceccarini
Galactocerebrosidase (GALC) is deficient in all tissues from human patients and animal models with globoid cell leukodystrophy (GLD) or Krabbe disease. The deficiency results in decreased lysosomal catabolism of certain galactolipids including galactosylceramide and psychosine that are synthesized maximally during myelination. According to current theories, the accumulation of psychosine in humans and animals with GLD induces oligodendrocyte degeneration and myelination ceases. Transduction of oligodendrocytes from twitcher mice with a retroviral vector containing the GALC cDNA can correct the enzyme deficiency in these cells. Our data show that twitcher astrocytes and oligodendrocytes can internalize exogenous GALC, as well as donate the enzyme to the mutant glial cells. Antibodies against human GALC localized the GALC antigen in retrovirally transduced cells and cells receiving enzyme via cell to cell secretion and uptake to the lysosomal fraction. In fact immunocytochemical studies in transduced oligodendrocytes revealed that the GALC colocalizes in vesicles lysosomal-associated membrane protein-2 (LAMP2) (+). Moreover, labeling cells with anti-GALC and a marker for oligodendrocytes demonstrated that, upon differentiation, transduced, twitcher oligodendrocytes attained the normal branched process configuration, while untransduced cells show only abnormal morphology. Phenotype correction in mutant oligodendrocytes has also been observed after enzyme transfer. These studies indicate that GALC activity supplied to cultured oligodendrocytes from twitcher mice by different methods can correct the pathological phenotype of these cells.