Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad Afsar Uddin is active.

Publication


Featured researches published by Mohammad Afsar Uddin.


Energy and Environmental Science | 2014

Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ∼300 nm thick conventional single-cell device

Thanh Luan Nguyen; Hyun-Jung Choi; Seo-Jin Ko; Mohammad Afsar Uddin; Bright Walker; Seungjib Yum; Ji-Eun Jeong; Myoung Hee Yun; Tae Joo Shin; Sungu Hwang; Jin Young Kim; Han Young Woo

We report a series of semi-crystalline, low band gap (LBG) polymers and demonstrate the fabrication of highly efficient polymer solar cells (PSCs) in a thick single-cell architecture. The devices achieve a power conversion efficiency (PCE) of over 7% without any post-treatment (annealing, solvent additive, etc.) and outstanding long-term thermal stability for 200 h at 130 °C. These excellent characteristics are closely related to the molecular structures where intra- and/or intermolecular noncovalent hydrogen bonds and dipole–dipole interactions assure strong interchain interactions without losing solution processability. The semi-crystalline polymers form a well-distributed nano-fibrillar networked morphology with PC70BM with balanced hole and electron mobilities (a h/e mobility ratio of 1–2) and tight interchain packing (a π–π stacking distance of 3.57–3.59 A) in the blend films. Furthermore, the device optimization with a processing additive and methanol treatment improves efficiencies up to 9.39% in a ∼300 nm thick conventional single-cell device structure. The thick active layer in the PPDT2FBT:PC70BM device attenuates incident light almost completely without damage in the fill factor (0.71–0.73), showing a high short-circuit current density of 15.7–16.3 mA cm−2. Notably, PPDT2FBT showed negligible changes in the carrier mobility even at ∼1 μm film thickness.


Advanced Materials | 2016

Highly Efficient Fullerene-Free Polymer Solar Cells Fabricated with Polythiophene Derivative

Yunpeng Qin; Mohammad Afsar Uddin; Yu Chen; Bomee Jang; Kang Zhao; Zhong Zheng; R. C. Yu; Tae Joo Shin; Han Young Woo; Jianhui Hou

A highly efficient fullerene-free polymer solar cell (PSC) based on PDCBT, a polythiophene derivative substituted with alkoxycarbonyl, achieves an impressive power conversion efficiency of 10.16%, which is the best result in PSCs based on polythiophene derivatives to date. In comparison with a poly(3-hexylthiophene):ITIC-based device, the photovoltaic and morphological properties of the PDCBT:ITIC-based device are carefully investigated and interpreted.


Advanced Materials | 2016

A High Efficiency Nonfullerene Organic Solar Cell with Optimized Crystalline Organizations.

Oh Kyu Kwon; Mohammad Afsar Uddin; Jung-Hwa Park; Sang Kyu Park; Thanh Luan Nguyen; Han Young Woo; Soo Young Park

A well-organized donor-acceptor crystalline structure is examined for high -performance nonfullerene solar cells. By thermal annealing, nanoscale structures of both donor and acceptor domains are successfully modulated, followed by -significant changes in the resulting -photovoltaic characteristics. When annealed at 90 °C, a maximum power conversion efficiency of 7.64% with a -remarkable open-circuit voltage of 1.03 V is obtained.


Polymer Chemistry | 2015

Optimization of side chains in alkylthiothiophene-substituted benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers

Shaoqing Zhang; Mohammad Afsar Uddin; Wenchao Zhao; Long Ye; Han Young Woo; Delong Liu; Bei Yang; Huifeng Yao; Yong Cui; Jianhui Hou

Alkyl side chains play critical roles in the molecular design of conjugated polymers for applications in bulk-heterojunction (BHJ) polymer solar cells (PSCs). Recently, the introduction of alkylthio substituents onto poly(benzo[1,2-b:4,5-b′]dithiophene-alt-thieno[3,4-b]thiophene) (PBDTTT)-based conjugated polymers has been proved to be an effective method to improve the photovoltaic properties of the polymers. In this contribution, three alkylthiothiophene-substituted benzodithiophene (BDT-TS) based polymers, named PBDT-TS1, PBDT-TS2 and PBDT-TS3, were synthesized and applied as donor materials in PSCs. In these three polymers, octyl, 2-ethylhexyl and 3,7-dimethyloctyl are used on their BDT units, respectively. The polymers were characterized in parallel by absorption spectroscopy, thermogravimetric analysis (TGA), electrochemical cyclic voltammetry (CV) and grazing-incidence wide-angle X-ray scattering (GI-WAXS), and also their photovoltaic properties in PSCs were studied and compared. The results reveal that the alkyls have little influence on absorption spectra and molecular energy levels of the polymers. The GI-WAXS results show that PBDT-TS1 has stronger and tighter π–π stacking than the other two polymers, implying that linear alkyls may reduce steric hindrance than branched alkyl chains in an aggregation state. As a consequence of the strong π–π inter-chain packing of PBDT-TS1, an increased short circuit current density (JSC) and fill factor (FF) as well as a power conversion efficiency of over 9.5% are achieved in single-cell BHJ devices, which are obviously higher than those for devices based on the other two polymers. Overall, the results of this work suggest that alkyl side groups play an important role in affecting the π–π stacking of the conjugated polymers, i.e., the linear octyl has weaker steric hindrance for the inter-chain π–π stack than the branched 2-ethylhexyl and 3,7-dimethyloctyl, and for the highly efficient polymer based on the 2-alkylthiothiophene-substituted BDT, PBDT-TS1 has the optimal structure.


Angewandte Chemie | 2017

Effects of Bithiophene Imide Fusion on the Device Performance of Organic Thin-Film Transistors and All-Polymer Solar Cells

Yingfeng Wang; Zhenglong Yan; Han Guo; Mohammad Afsar Uddin; Shaohua Ling; Xin Zhou; Huimin Su; Junfeng Dai; Han Young Woo; Xugang Guo

Two new bithiophene imide (BTI)-based n-type polymers were synthesized. f-BTI2-FT based on a fused BTI dimer showed a smaller band gap, a lower LUMO, and higher crystallinity than s-BTI2-FT containing a BTI dimer connected through a single bond. s-BTI2-FT exhibited a remarkable electron mobility of 0.82 cm2  V-1  s-1 , and f-BTI2-FT showed a further improved mobility of 1.13 cm2  V-1  s-1 in transistors. When blended with the polymer donor PTB7-Th, f-BTI2-FT-based all-polymer solar cells (all-PSCs) attained a PCE of 6.85 %, the highest value for an all-PSC not based on naphthalene (or perylene) diimide polymer acceptors. However, s-BTI2-FT all-PSCs showed nearly no photovoltaic effect. The results demonstrate that f-BTI2-FT is one of most promising n-type polymers and that ring fusion offers an effective approach for designing polymers with improved electrical properties.


Energy and Environmental Science | 2015

Spectroscopically tracking charge separation in polymer : fullerene blends with a three-phase morphology

Joseph K. Gallaher; Shyamal K. K. Prasad; Mohammad Afsar Uddin; Taehyo Kim; Jin Young Kim; Han Young Woo; Justin M. Hodgkiss

The coexistence of intermixed amorphous polymer : fullerene phases alongside pure semicrystalline polymer and fullerene phases provides a plausible explanation for effective charge separation in organic photovoltaic blends by providing a cascaded energy landscape. We sought to test this proposal by spectroscopically tracking charge dynamics in 3-phase blends compared with binary counterparts and linking these dynamics to free charge yields. Our study applies broadband transient absorption spectroscopy to a series of closely related alternating thiophene–benzothiadiazole copolymers in which the tuned curvature of the polymer backbone controls the nature and degree of polymer–fullerene intermixing. Free charge generation is most efficient in the 3-phase morphology that features intimately mixed polymer : PCBM regions amongst neat polymer and PCBM phases. TA spectral dynamics and polarization anisotropy measurements reveal the sub-nanosecond migration of holes from intermixed to pure polymer regions of such blends. In contrast, 2-phase blends lack the spectral dynamics of this charge migration process and suffer from severe geminate recombination losses. These results provide valuable spectroscopic evidence for an efficient charge separation pathway that relies on the 3-phase morphology.


Journal of Materials Chemistry | 2016

Quinoxaline–thiophene based thick photovoltaic devices with an efficiency of ∼8%

Yuxiang Li; Seo-Jin Ko; Song Yi Park; Hyosung Choi; Thanh Luan Nguyen; Mohammad Afsar Uddin; Taehyo Kim; Sungu Hwang; Jin Young Kim; Han Young Woo

A series of difluoroquinoxaline–thiophene based reduced band gap polymers was designed and synthesized by considering non-covalent coulombic interactions in a polymeric main chain. The insertion of different numbers of thiophene moieties allows for the adjustment of the absorption range, frontier energy levels, crystalline self-organization, film morphology and the resulting photovoltaic properties. A thick blend film of poly(thiophene-alt-(2,3-bis(3,4-bis(octyloxy)phenyl)-6,7-difluoroquinoxaline)) (PDFQx-T):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) showed a rough, inhomogeneous and largely phase-separated surface morphology compared to a typical film with ∼100 nm thickness. A similar trend was observed in the surface morphology of a poly(2,2′-bithiophene-alt-(2,3-bis(3,4-bis(octyloxy)phenyl)-6,7-difluoroquinoxaline)) (PDFQx-2T) blend film, showing deteriorated photovoltaic properties with increasing film thickness. In contrast, poly(2,2′:5′,2′′-terthiophene-alt-2,3-bis(3,4-bis(octyloxy)phenyl)-6,7-difluoroquinoxaline) (PDFQx-3T) had a similar blend film morphology for both thick and thin active layers, showing a homogeneous and smooth morphology with a face-on orientation and tight π–π stacking (d-spacing = 3.6 A). The optimized photovoltaic cell based on PDFQx-3T : PC71BM achieved a power conversion efficiency (PCE) of 8% with an open-circuit voltage of 0.74 V, a short-circuit current of 17.19 mA cm−2 and a fill factor of 0.63 at an active layer thickness of ∼270 nm. It is still a challenge to develop photovoltaic polymers which allow efficient charge transport and extraction at a device thickness of ∼300 nm. Fine-adjustment of intra- and interchain interactions must be considered carefully to achieve high device properties for thick devices without deterioration in the blend morphology and charge recombination. This high PCE at an active layer thickness of ∼300 nm may suggest great potential for the mass production of printed polymer solar cells via industrial solution processes.


Energy and Environmental Science | 2017

High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole

Seo-Jin Ko; Quoc Viet Hoang; Chang Eun Song; Mohammad Afsar Uddin; Eunhee Lim; Song Yi Park; Byoung Hoon Lee; Seyeong Song; Sang-Jin Moon; Sungu Hwang; Pierre-Olivier Morin; Mario Leclerc; Gregory M. Su; Michael L. Chabinyc; Han Young Woo; Won Suk Shin; Jin Young Kim

A series of semi-crystalline, wide band gap (WBG) photovoltaic polymers were synthesized with varying number and topology of fluorine substituents. To decrease intramolecular charge transfer and to modulate the resulting band gap of D–A type copolymers, electron-releasing alkoxy substituents were attached to electron-deficient benzothiadiazole (A) and electron-withdrawing fluorine atoms (0–4F) were substituted onto a 1,4-bis(thiophen-2-yl)benzene unit (D). Intra- and/or interchain noncovalent Coulombic interactions were also incorporated into the polymer backbone to promote planarity and crystalline intermolecular packing. The resulting optical band gap and the valence level were tuned to 1.93–2.15 eV and −5.37 to −5.67 eV, respectively, and strong interchain organization was observed by differential scanning calorimetry, high-resolution transmission electron microscopy and grazing incidence X-ray scattering measurements. The number of fluorine atoms and their position significantly influenced the photophysical, morphological and optoelectronic properties of bulk heterojunctions (BHJs) with these polymers. BHJ photovoltaic devices showed a high power conversion efficiency (PCE) of up to 9.8% with an open-circuit voltage of 0.94–1.03 V. To our knowledge, this PCE is one of the highest values for fullerene-based single BHJ devices with WBG polymers having a band gap of over 1.90 eV. A tandem solar cell was also demonstrated successfully to show a PCE of 10.3% by combining a diketopyrrolopyrrole-based low band gap polymer.


Polymer Chemistry | 2016

Straight chain D–A copolymers based on thienothiophene and benzothiadiazole for efficient polymer field effect transistors and photovoltaic cells

Yuxiang Li; Tack Ho Lee; Song Yi Park; Mohammad Afsar Uddin; Taehyo Kim; Sungu Hwang; Jin Young Kim; Han Young Woo

Three types of linear and planar-structured donor (D)–acceptor (A) type alternating copolymers were synthesized by incorporating intrachain noncovalent Coulombic interactions, based on thieno[3,2-b]thiophene and benzothiadiazole (BT) moieties. The chain linearity and fine adjustment of interchain organization by the incorporation of different numbers of electronegative fluorine atoms onto BT, significantly affected the frontier energy levels, film morphology, and the resulting charge transport properties. The semi-crystalline morphology and charge carrier transport properties were studied by grazing incidence wide-angle X-ray scattering and polymer field-effect transistor (PFET) characteristic measurements. A hole mobility as high as 0.1 cm2 V−1 s−1 in PFET was obtained for poly[2,5-bis(decyltetradecyloxy)benzene-alt-4,7-bis(thieno[3,2-b]thiophene)-5,6-difluoro-2,1,3-benzothiadiazole] (PPDTT2FBT), suggesting a strong self-organization due to the linear chain configuration with conformation lock. The difluorinated PPDTT2FBT also showed the highest power conversion efficiency (PCE, 6.4%) by blending with PC71BM, but a poorer photovoltaic performance was obtained compared to the wavy-structured counterpart, poly[2,5-bis(2-hexyldecyloxy)phenylene-alt-5,6-difluoro-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole] (PPDT2FBT), reported previously. The mainly edge-on orientation of PPDTT2FBT (with π–π stacking in both xy and z directions) is attributed to the moderate PCE in the blends. Fine modulation of chain linearity may suggest an effective way to control the desirable interchain ordering and bulk film morphology for specific application in polymer solar cells or field effect transistors.


Journal of Materials Chemistry | 2017

Perylene diimide isomers containing a simple sp3-core for non-fullerene-based polymer solar cells

Gi Eun Park; Suna Choi; Dae Hee Lee; Mallesham Godumala; Mohammad Afsar Uddin; Han Young Woo; Min Ju Cho; Dong Hoon Choi

In order to investigate the effect of the geometries of perylene diimide (PDI)-based small molecules, five different isomers were synthesized by using a cyclohexane core as a simple sp3-σ core. Diaminocylohexane is such an effective core for the systematic development of many kinds of isomers via geometric tuning as well as for reducing the self-aggregation tendency of PDIs. Depending on the anchoring position of the PDI units on the cyclohexane core (ortho-, meta- and para-), isomers exhibited differences in solubility and crystallinity. Among the studied isomers, ortho-substituted t-OCP was found to have a highly twisted molecular structure which minimizes the strong tendency towards crystallization due to individual PDI moieties. The unique geometrical nature of the t-OCP isomer led to the highest power conversion efficiency (PCE = 6.23%) of bulk heterojunction (BHJ) polymer solar cells (PSCs) with a higher short-circuit current density (Jsc) and fill factor (FF). It is mainly ascribed to the formation of a nanophase interpenetrating network with well-balanced carrier mobility in the blend film.

Collaboration


Dive into the Mohammad Afsar Uddin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Young Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Xugang Guo

South University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Sungu Hwang

Pusan National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Taehyo Kim

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seo-Jin Ko

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Han Guo

South University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Song Yi Park

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yuxiang Li

Pusan National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge