Mohammad Alimohammadi
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammad Alimohammadi.
The New England Journal of Medicine | 2008
Mohammad Alimohammadi; Peyman Björklund; Åsa Hallgren; Nora Pöntynen; Gabor Szinnai; Noriko Shikama; Marcel P. Keller; Olov Ekwall; Sarah Kinkel; Eystein S. Husebye; Jan Gustafsson; Fredrik Rorsman; Leena Peltonen; Corrado Betterle; Jaakko Perheentupa; Göran Åkerström; Gunnar Westin; Hamish S. Scott; Georg A. Holländer; Olle Kämpe
BACKGROUND Autoimmune polyendocrine syndrome type 1 (APS-1) is a multiorgan autoimmune disorder caused by mutations in AIRE, the autoimmune regulator gene. Though recent studies concerning AIRE deficiency have begun to elucidate the molecular pathogenesis of organ-specific autoimmunity in patients with APS-1, the autoantigen responsible for hypoparathyroidism, a hallmark of APS-1 and its most common autoimmune endocrinopathy, has not yet been identified. METHODS We performed immunoscreening of a human parathyroid complementary DNA library, using serum samples from patients with APS-1 and hypoparathyroidism, to identify patients with reactivity to the NACHT leucine-rich-repeat protein 5 (NALP5). Subsequently, serum samples from 87 patients with APS-1 and 293 controls, including patients with other autoimmune disorders, were used to determine the frequency and specificity of autoantibodies against NALP5. In addition, the expression of NALP5 was investigated in various tissues. RESULTS NALP5-specific autoantibodies were detected in 49% of the patients with APS-1 and hypoparathyroidism but were absent in all patients with APS-1 but without hypoparathyroidism, in all patients with other autoimmune endocrine disorders, and in all healthy controls. NALP5 was predominantly expressed in the cytoplasm of parathyroid chief cells. CONCLUSIONS NALP5 appears to be a tissue-specific autoantigen involved in hypoparathyroidism in patients with APS-1. Autoantibodies against NALP5 appear to be highly specific and may be diagnostic for this prominent component of APS-1.
Small | 2013
Mariya V. Khodakovskaya; Bong-Soo Kim; Jong Nam Kim; Mohammad Alimohammadi; Enkeleda Dervishi; Thikra Mustafa; Carl E. Cernigla
Multi-walled carbon nanotubes (CNTs) can affect plant phenotype and the composition of soil microbiota. Tomato plants grown in soil supplemented with CNTs produce two times more flowers and fruit compared to plants grown in control soil. The effect of carbon nanotubes on microbial community of CNT-treated soil is determined by denaturing gradient gel electrophoresis and pyrosequencing analysis. Phylogenetic analysis indicates that Proteobacteria and Bacteroidetes are the most dominant groups in the microbial community of soil. The relative abundances of Bacteroidetes and Firmicutes are found to increase, whereas Proteobacteria and Verrucomicorbia decrease with increasing concentration of CNTs. The results of comparing diversity indices and species level phylotypes (OTUs) between samples showed that there is not a significant affect on bacterial diversity.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Mohammad Alimohammadi; Noémie Dubois; Filip Sköldberg; Åsa Hallgren; Isabelle Tardivel; Håkan Hedstrand; Jan Haavik; Eystein S. Husebye; Jan Gustafsson; Fredrik Rorsman; Antonella Meloni; Christer Janson; Bernard Vialettes; Merja Kajosaari; William Egner; Ravishankar Sargur; Fredrik Pontén; Zahir Amoura; Alain Grimfeld; Filippo De Luca; Corrado Betterle; Jaakko Perheentupa; Olle Kämpe; Jean-Claude Carel
Patients with autoimmune polyendocrine syndrome type 1 (APS-1) suffer from multiple organ-specific autoimmunity with autoantibodies against target tissue-specific autoantigens. Endocrine and nonendocrine organs such as skin, hair follicles, and liver are targeted by the immune system. Despite sporadic observations of pulmonary symptoms among APS-1 patients, an autoimmune mechanism for pulmonary involvement has not been elucidated. We report here on a subset of APS-1 patients with respiratory symptoms. Eight patients with pulmonary involvement were identified. Severe airway obstruction was found in 4 patients, leading to death in 2. Immunoscreening of a cDNA library using serum samples from a patient with APS-1 and obstructive respiratory symptoms identified a putative potassium channel regulator (KCNRG) as a pulmonary autoantigen. Reactivity to recombinant KCNRG was assessed in 110 APS-1 patients by using immunoprecipitation. Autoantibodies to KCNRG were present in 7 of the 8 patients with respiratory symptoms, but in only 1 of 102 APS-1 patients without respiratory symptoms. Expression of KCNRG messenger RNA and protein was found to be predominantly restricted to the epithelial cells of terminal bronchioles. Autoantibodies to KCNRG, a protein mainly expressed in bronchial epithelium, are strongly associated with pulmonary involvement in APS-1. These findings may facilitate the recognition, diagnosis, characterization, and understanding of the pulmonary manifestations of APS-1.
Science Translational Medicine | 2013
Anthony K. Shum; Mohammad Alimohammadi; Catherine L. Tan; Mickie H. Cheng; Todd Metzger; Christopher S. Law; Wint Lwin; Jaakko Perheentupa; Hélène Bour-Jordan; Jean Claude Carel; Eystein S. Husebye; Filippo De Luca; Christer Janson; Ravishankar Sargur; Noémie Dubois; Merja Kajosaari; Paul J. Wolters; Harold A. Chapman; Olle Kämpe; Mark S. Anderson
Autoimmunity targeting the lung-specific antigen BPIFB1 may be important to the pathogenesis of interstitial lung disease. Seeing the Forest by Examining the Trees Sometimes looking at something too closely obscures the big picture. However, when the big picture is too big, a reductionist approach may be best. Interstitial lung disease (ILD) is a complex and heterogeneous disorder, frequently associated with autoimmune syndromes. However, due in part to this heterogeneity, it remains unclear whether autoimmunity directly contributes to ILD. Now, Shum et al. attack this question by example—connecting one form of autoimmune disease, autoimmune polyglandular syndrome type 1 (APS1), with clinical ILD. The authors screened patients with APS1 and found autoantibodies to a lung-specific protein—BPIFB1—associated with the development of ILD in APS1 patients. They then extended these findings to non-APS1–associated ILD and found that 12 to 15% of patients also had these autoantibodies. The authors then examined a potential pathogenic mechanism of these autoantibodies in a mouse model of APS1, finding that similar autoantibodies and development of ILD resulted from a defect in thymic tolerance. Indeed, autoimmune targeting of BPIFB1 could cause ILD in mice without the autoimmune defect. These results suggest not only that ILD may be an autoimmune disorder in APS1 patients but also that autoimmunity may also contribute to pathology in a broader swath of ILD patients. Interstitial lung disease (ILD) is a complex and heterogeneous disorder that is often associated with autoimmune syndromes. Despite the connection between ILD and autoimmunity, it remains unclear whether ILD can develop from an autoimmune response that specifically targets the lung parenchyma. We examined a severe form of autoimmune disease, autoimmune polyglandular syndrome type 1 (APS1), and established a strong link between an autoimmune response to the lung-specific protein BPIFB1 (bactericidal/permeability-increasing fold-containing B1) and clinical ILD. Screening of a large cohort of APS1 patients revealed autoantibodies to BPIFB1 in 9.6% of APS1 subjects overall and in 100% of APS1 subjects with ILD. Further investigation of ILD outside the APS1 disorder revealed BPIFB1 autoantibodies present in 14.6% of patients with connective tissue disease–associated ILD and in 12.0% of patients with idiopathic ILD. The animal model for APS1, Aire−/− mice, harbors autoantibodies to a similar lung antigen (BPIFB9); these autoantibodies are a marker for ILD. We found that a defect in thymic tolerance was responsible for the production of BPIFB9 autoantibodies and the development of ILD. We also found that immunoreactivity targeting BPIFB1 independent of a defect in Aire also led to ILD, consistent with our discovery of BPIFB1 autoantibodies in non-APS1 patients. Overall, our results demonstrate that autoimmunity targeting the lung-specific antigen BPIFB1 may contribute to the pathogenesis of ILD in patients with APS1 and in subsets of patients with non-APS1 ILD, demonstrating the role of lung-specific autoimmunity in the genesis of ILD.
Nanotechnology | 2011
Mohammad Alimohammadi; Yang Xu; Daoyuan Wang; Alexandru S. Biris; Mariya V. Khodakovskaya
Plant seedlings were exposed to single-walled carbon nanotube-quantum dot conjugates (SWCNT-QD) mixed in the growth medium in order to understand the interactions between these multicomponent nanosystems and plants. A combination of fluorescent and Raman-scattering 2D mapping analysis was used to clearly monitor the presence of the SWCNT-QD conjugates in various parts of the tomato seedlings. We found that the addition of QDs to SWCNTs dramatically changed the biological viability of the tomato plants by significantly accelerating leaf senescence and inhibiting root formation. Although the exposure of SWCNTs only to the plants induced positive effects, the chlorophyll content decreased by 1.5-fold in leaves, and the total weight of the root system decreased four times for the tomato plants exposed to SWCNT-QDs (50 µg ml(-1)) compared to plants grown on regular medium as controls. Our results clearly indicate that the exposure of plants to multicomponent nanomaterials is highly influenced by the presence and bioactivity of each component, individually. Such studies could be the foundation for understanding how complex nanosized systems affect the activity of various biological systems with a major impact on ecotoxicology.
European Journal of Endocrinology | 2011
Kari Lima; Tore G. Abrahamsen; Anette S. B. Wolff; Eystein S. Husebye; Mohammad Alimohammadi; Olle Kämpe; Ivar Følling
OBJECTIVE To characterize the endocrine and autoimmune disturbances with emphasis on parathyroid dysfunction in patients with 22q11.2 deletion syndrome (22q11.2 DS). Design In this nationwide survey; 59 patients (age 1-54 years) out of 86 invited with a 22q11.2 DS were recruited through all the genetic institutes in Norway. METHODS Data was collected from blood tests, medical records, a physical examination and a semi-structured interview. We registered autoimmune diseases and measured autoantibodies, hormone levels and HLA types. RESULTS Twenty-eight (47%) patients had hypoparathyroidism or a history of neonatal or transient hypocalcemia. Fifteen patients had neonatal hypocalcemia. Fourteen patients had permanent hypoparathyroidism including seven (54%) of those above age 15 years. A history of neonatal hypocalcemia did not predict later occurring hypoparathyroidism. Parathyroid hormone levels were generally low indicating a low reserve capacity. Twenty-eight patients were positive for autoantibodies. Six (10%) persons had developed an autoimmune disease, and all were females (P<0.02). Hypoparathyroidism correlated with autoimmune diseases (P<0.05), however, no antibodies were detected against the parathyroid glands. CONCLUSIONS Hypoparathyroidism and autoimmunity occur frequently in the 22q11.2 DS. Neonatal hypocalcemia is not associated with later development of permanent hypoparathyroidism. Hypoparathyroidism may present at any age, also in adults, and warrants regular measurement of calcium levels. Hypoparathyroidism and autoimmunity occur frequently together. Our findings of autoimmune diseases in 10% of the patients highlight the importance of stringent screening and follow-up routines.
Science Translational Medicine | 2015
Nils Landegren; Donald Sharon; Anthony K. Shum; Imran S. Khan; Kayla J. Fasano; Åsa Hallgren; Caroline Kampf; Eva Freyhult; Brita Ardesjö-Lundgren; Mohammad Alimohammadi; Sandra Rathsman; Jonas F. Ludvigsson; Dan Lundh; Ruben D. Motrich; Virginia E. Rivero; Lawrence Fong; Aleksander Giwercman; Jan Gustafsson; Jaakko Perheentupa; Eystein S. Husebye; Mark S. Anderson; Michael Snyder; Olle Kämpe
TGM4 is a male-specific autoantigen for prostatitis associated with autoimmune polyendocrine syndrome type 1. AIREing out autoimmunity Patients with autoimmune polyendocrine syndrome type 1(APS1) experience dysfunction in multiple endocrine glands due to mutations in the AIRE gene, which helps promote immune tolerance. These patients frequently are infertile; female infertility can be explained by autoimmune ovarian failure, but the causes of male infertility have remained unclear. Now, Landegren et al. report that the prostatic secretory molecule tranglutaminase 4 (TGM4) is a male-specific autoantigen in APS1 patients that could contribute to subfertility. They found autoantibodies to TGM4 in APS1 patients beginning at puberty, and confirmed in AIRE-deficient mice that TGM4 autoantibodies lead to a destructive prostatitis. These data could help explain infertility in male APS1 patients. Autoimmune polyendocrine syndrome type 1 (APS1), a monogenic disorder caused by AIRE gene mutations, features multiple autoimmune disease components. Infertility is common in both males and females with APS1. Although female infertility can be explained by autoimmune ovarian failure, the mechanisms underlying male infertility have remained poorly understood. We performed a proteome-wide autoantibody screen in APS1 patient sera to assess the autoimmune response against the male reproductive organs. By screening human protein arrays with male and female patient sera and by selecting for gender-imbalanced autoantibody signals, we identified transglutaminase 4 (TGM4) as a male-specific autoantigen. Notably, TGM4 is a prostatic secretory molecule with critical role in male reproduction. TGM4 autoantibodies were detected in most of the adult male APS1 patients but were absent in all the young males. Consecutive serum samples further revealed that TGM4 autoantibodies first presented during pubertal age and subsequent to prostate maturation. We assessed the animal model for APS1, the Aire-deficient mouse, and found spontaneous development of TGM4 autoantibodies specifically in males. Aire-deficient mice failed to present TGM4 in the thymus, consistent with a defect in central tolerance for TGM4. In the mouse, we further link TGM4 immunity with a destructive prostatitis and compromised secretion of TGM4. Collectively, our findings in APS1 patients and Aire-deficient mice reveal prostate autoimmunity as a major manifestation of APS1 with potential role in male subfertility.
Journal of the Neurological Sciences | 2015
Anna Rostedt Punga; Mats Andersson; Mohammad Alimohammadi; Tanel Punga
PURPOSE Reliable biological markers for patients with the autoimmune neuromuscular disorder myasthenia gravis (MG) are lacking. We determined whether levels of the circulating immuno-microRNAs miR-150-5p and miR-21-5p were elevated in sera from clinically heterogeneous MG patients, with and without immunosuppression, as compared to healthy controls and patients with other autoimmune disorders. METHODS Sera from 71 MG patients and 55 healthy controls (HC) were analyzed for the expression levels of miR-150-5p and miR-21-5p with qRT-PCR. Sera were also assayed from 23 patients with other autoimmune disorders (AID; psoriasis, Addisons and Crohns diseases). RESULTS 34 MG patients had no immunosuppressive drug treatment (MG-0) and 37 patients were under stable immunosuppressive drug treatment since ≥ 6 months (MG+IMM). Serum levels of miR-150-5p and miR-21-5p were higher in the MG-0 patients compared to HC (p<0.0001). Further, miR-150-5p levels were 41% lower and miR-21-5p levels were 25% lower in the MG+IMM compared to MG-0 (p=0.0051 and 0.0419). In the AID patients, mean miR-150-5p and miR-21-5p were comparable with healthy controls (p=0.66). CONCLUSIONS The immuno-microRNAs miR-150-5p and miR-21-5p show a disease specific signature, which suggests these microRNAs as possible biological autoimmune markers of MG.
Journal of Materials Chemistry B | 2013
Meena Mahmood; Hector Villagarcia; Enkeleda Dervishi; Thikra Mustafa; Mohammad Alimohammadi; Dan Casciano; Mariya V. Khodakovskaya; Alexandru S. Biris
In this work, we demonstrate that graphitic nanomaterials-carboxylated multi-walled carbon nanotubes (MWCNTs) and carboxylated graphenes (Gn)-have the ability to stimulate the process of osteogenesis in mammalian bone cells and significantly increase the level of bone mineralization. Exposure of MC3T3-E1 bone cells to carboxylated MWCNTs-nano-sized (nano-Gn) and micro-sized (micro-Gn) in concentrations of 1-10 μg ml-1-resulted in the enhancement of mineralization in a time-dependent manner for the cells exposed to the nanomaterials, as compared to unexposed cells. However, the graphitic nanomaterials did not show significant toxicity in the concentration levels that were studied. Gene expression analysis revealed that the MWCNTs activated expression of the mid-stage osteogenic marker, Col I, on the 12th day of cell incubation. The gene expression of the earliest osteogenic marker, Cbfa-1, and the downstream effector of BMP signaling, SMAD1, were significantly increased in bone cells exposed to both materials (MWCNTs and nano-Gn) as compared to unexposed control cells. Our data clearly demonstrate the ability of graphitic nano-materials to penetrate bone cells and regulate deposition of minerals in an in vitro model system. Our findings highlight the potential use of such materials in regenerative nanomedicine.
Scandinavian Journal of Immunology | 2011
Casey Smith; Mikael Oscarson; Lars Rönnblom; Mohammad Alimohammadi; Jaakko Perheentupa; Eystein S. Husebye; Jan Gustafsson; Gunnel Nordmark; Antonella Meloni; Patricia Crock; Olle Kämpe; Sophie Bensing
Autoimmune polyendocrine syndrome type 1 (APS1) is a rare monogenic autoimmune disorder caused by mutations in the autoimmune regulator (AIRE) gene. High‐titre autoantibodies are a characteristic feature of APS1 and are often associated with particular disease manifestations. Pituitary deficits are reported in approximately 7% of APS1 patients, with immunoreactivity to pituitary tissue frequently described. Using APS1 patient serum to immunoscreen a pituitary cDNA expression library, testis specific, 10 (TSGA10) was isolated. Immunoreactivity against TSGA10 was detected in 5/99 (5.05%) patients with APS1, but also in 5/135 (3.70%) systemic lupus erythematosus (SLE) patients and 1/188 (0.53%) healthy controls. TSGA10 autoantibodies were not detected in the serum from patients with any other autoimmune disease. Autoantibodies against TSGA10 were detectable from a young age in 4/5 positive APS1 patients with autoantibody titres remaining relatively constant over time. Furthermore, real‐time PCR confirmed TSGA10 mRNA to be most abundantly expressed in the testis and also showed moderate and low expression levels throughout the entire body. TSGA10 should be considered as an autoantigen in a subset of APS1 patients and also in a minority of SLE patients. No recognizable clinical phenotype could be found to correlate with positive autoantibody reactivity.