Mohammad Alsady
Radboud University Nijmegen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mohammad Alsady.
Journal of The American Society of Nephrology | 2014
Theun de Groot; Mohammad Alsady; Marcel Jaklofsky; Irene Otte-Höller; Ruben Baumgarten; Rachel H. Giles; Peter M. T. Deen
Vasopressin-regulated expression and insertion of aquaporin-2 channels in the luminal membrane of renal principal cells is essential for urine concentration. Lithium affects urine concentrating ability, and approximately 20% of patients treated with lithium develop nephrogenic diabetes insipidus (NDI), a disorder characterized by polyuria and polydipsia. Lithium-induced NDI is caused by aquaporin-2 downregulation and a reduced ratio of principal/intercalated cells, yet lithium induces principal cell proliferation. Here, we studied how lithium-induced principal cell proliferation can lead to a reduced ratio of principal/intercalated cells using two-dimensional and three-dimensional polarized cultures of mouse renal collecting duct cells and mice treated with clinically relevant lithium concentrations. DNA image cytometry and immunoblotting revealed that lithium initiated proliferation of mouse renal collecting duct cells but also increased the G2/S ratio, indicating G2/M phase arrest. In mice, treatment with lithium for 4, 7, 10, or 13 days led to features of NDI and an increase in the number of principal cells expressing PCNA in the papilla. Remarkably, 30%-40% of the PCNA-positive principal cells also expressed pHistone-H3, a late G2/M phase marker detected in approximately 20% of cells during undisturbed proliferation. Our data reveal that lithium treatment initiates proliferation of renal principal cells but that a significant percentage of these cells are arrested in the late G2 phase, which explains the reduced principal/intercalated cell ratio and may identify the molecular pathway underlying the development of lithium-induced renal fibrosis.
Journal of The American Society of Nephrology | 2016
Theun de Groot; Anne P. Sinke; Marleen L. A. Kortenoeven; Mohammad Alsady; Ruben Baumgarten; Olivier Devuyst; Johannes Loffing; Jack F.M. Wetzels; Peter M. T. Deen
To reduce lithium-induced nephrogenic diabetes insipidus (lithium-NDI), patients with bipolar disorder are treated with thiazide and amiloride, which are thought to induce antidiuresis by a compensatory increase in prourine uptake in proximal tubules. However, thiazides induced antidiuresis and alkalinized the urine in lithium-NDI mice lacking the sodium-chloride cotransporter, suggesting that inhibition of carbonic anhydrases (CAs) confers the beneficial thiazide effect. Therefore, we tested the effect of the CA-specific blocker acetazolamide in lithium-NDI. In collecting duct (mpkCCD) cells, acetazolamide reduced the cellular lithium content and attenuated lithium-induced downregulation of aquaporin-2 through a mechanism different from that of amiloride. Treatment of lithium-NDI mice with acetazolamide or thiazide/amiloride induced similar antidiuresis and increased urine osmolality and aquaporin-2 abundance. Thiazide/amiloride-treated mice showed hyponatremia, hyperkalemia, hypercalcemia, metabolic acidosis, and increased serum lithium concentrations, adverse effects previously observed in patients but not in acetazolamide-treated mice in this study. Furthermore, acetazolamide treatment reduced inulin clearance and cortical expression of sodium/hydrogen exchanger 3 and attenuated the increased expression of urinary PGE2 observed in lithium-NDI mice. These results show that the antidiuresis with acetazolamide was partially caused by a tubular-glomerular feedback response and reduced GFR. The tubular-glomerular feedback response and/or direct effect on collecting duct principal or intercalated cells may underlie the reduced urinary PGE2 levels with acetazolamide, thereby contributing to the attenuation of lithium-NDI. In conclusion, CA activity contributes to lithium-NDI development, and acetazolamide attenuates lithium-NDI development in mice similar to thiazide/amiloride but with fewer adverse effects.
Journal of The American Society of Nephrology | 2016
Mohammad Alsady; Ruben Baumgarten; Peter M. T. Deen; T. de Groot
Trace amounts of lithium are essential for our physical and mental health, and administration of lithium has improved the quality of life of millions of patients with bipolar disorder for >60 years. However, in a substantial number of patients with bipolar disorder, long-term lithium therapy comes at the cost of severe renal side effects, including nephrogenic diabetes insipidus and rarely, ESRD. Although the mechanisms underlying the lithium-induced renal pathologies are becoming clearer, several recent animal studies revealed that short-term administration of lower amounts of lithium prevents different forms of experimental AKI. In this review, we discuss the knowledge of the pathologic and therapeutic effects of lithium in the kidney. Furthermore, we discuss the underlying mechanisms of these seemingly paradoxical effects of lithium, in which fine-tuned regulation of glycogen synthase kinase type 3, a prime target for lithium, seems to be key. The new discoveries regarding the protective effect of lithium against AKI in rodents call for follow-up studies in humans and suggest that long-term therapy with low lithium concentrations could be beneficial in CKD.
Pflügers Archiv: European Journal of Physiology | 2016
Sylvie Janas; François Seghers; Olivier Schakman; Mohammad Alsady; Peter M. T. Deen; Joris Vriens; Fadel Tissir; Bernd Nilius; Johannes Loffing; Philippe Gailly; Olivier Devuyst
TRPV4 is a polymodal cation channel expressed in osmosensitive neurons of the hypothalamus and in the mammalian nephron. The segmental distribution and role(s) of TRPV4 in osmoregulation remain debated. We investigated the renal distribution pattern of TRPV4 and the functional consequences of its disruption in mouse models. Using qPCR on microdissected segments, immunohistochemistry, and a LacZ reporter mouse, we found that TRPV4 is abundantly expressed in the proximal tubule, the late distal convoluted tubule, and throughout the connecting tubule and collecting duct, including principal and intercalated cells. TRPV4 was undetectable in the glomeruli and thick ascending limb and weakly abundant in the early distal convoluted tubule. Metabolic studies in Trpv4+/+ and Trpv4−/− littermates revealed that the lack of TRPV4 did not influence activity, food and water intake, renal function, and urinary concentration at baseline. The mice showed a similar response to furosemide, water loading and deprivation, acid loading, and dietary NaCl restriction. However, Trpv4−/− mice showed a significantly lower vasopressin synthesis and release after water deprivation, with a loss of the positive correlation between plasma osmolality and plasma vasopressin levels, and a delayed water intake upon acute administration of hypertonic saline. Specific activation of TRPV4 in primary cultures of proximal tubule cells increased albumin uptake, whereas no effect of TRPV4 deletion could be observed at baseline. These data reveal that, despite its abundant expression in tubular segments, TRPV4 does not play a major role in the kidney or is efficiently compensated when deleted. Instead, TRPV4 is critical for the release of vasopressin, the sensation of thirst, and the central osmoregulation.
Kidney International | 2018
Jae Wook Lee; Mohammad Alsady; Chung-Lin Chou; Theun de Groot; Peter M. T. Deen; Mark A. Knepper; Carolyn M. Ecelbarger
In the syndrome of inappropriate antidiuretic hormone secretion (SIADH), hyponatremia is limited by onset of vasopressin-escape caused by loss of the water channel aquaporin-2 in the renal collecting duct despite high circulating vasopressin. Here, we use the methods of systems biology in a well-established rat model of SIADH to identify signaling pathways activated at the onset of vasopressin-escape. Using single-tubule RNA-Seq, full transcriptomes were determined in microdissected cortical collecting ducts of vasopressin-treated rats at 1, 2, and 4 days after initiation of oral water loading in comparison to time-control rats without water loading. The time-dependent mRNA abundance changes were mapped to gene sets associated with curated canonical signaling pathways and revealed evidence of perturbation of transforming growth factor β signaling and epithelial-to-mesenchymal transition on Day 1 of water loading simultaneous with the initial fall in Aqp2 gene expression. On Day 2 of water loading, transcriptomic changes mapped to Notch signaling and the transition from G0 into the cell cycle but arrest at the G2/M stage. There was no evidence of cell proliferation or altered principal or intercalated cell numbers. Exposure of vasopressin-treated cultured mpkCCD cells to transforming growth factor β resulted in a virtually complete loss of aquaporin-2. Thus, there is a partial epithelial-to-mesenchymal transition during vasopressin escape with a subsequent shift from quiescence into the cell cycle with eventual arrest and loss of aquaporin-2.
American Journal of Physiology-renal Physiology | 2018
Mohammad Alsady; Theun de Groot; Marleen L. A. Kortenoeven; Claudia Carmone; Kim Neijman; Melissa Bekkenkamp-Grovenstein; Udo Engelke; Ron A. Wevers; Ruben Baumgarten; Ron Korstanje; Peter M. T. Deen
Lithium, given to bipolar disorder patients, causes nephrogenic diabetes insipidus (Li-NDI), a urinary-concentrating defect. Li-NDI occurs due to downregulation of principal cell AQP2 expression, which coincides with principal cell proliferation. The metabolic effect of lithium on principal cells, however, is unknown and investigated here. In earlier studies, we showed that the carbonic anhydrase (CA) inhibitor acetazolamide attenuated Li-induced downregulation in mouse-collecting duct (mpkCCD) cells. Of the eight CAs present in mpkCCD cells, siRNA and drug treatments showed that downregulation of CA9 and to some extent CA12 attenuated Li-induced AQP2 downregulation. Moreover, lithium induced cell proliferation and increased the secretion of lactate. Lithium also increased urinary lactate levels in wild-type mice that developed Li-NDI but not in lithium-treated mice lacking ENaC, the principal cell entry site for lithium. Inhibition of aerobic glycolysis with 2-deoxyglucose (2DG) attenuated lithium-induced AQP2 downregulation in mpkCCD cells but did not attenuate Li-NDI in mice. Interestingly, NMR analysis demonstrated that lithium also increased the urinary succinate, fumarate, citrate, and NH4+ levels, which were, in contrast to lactate, not decreased by 2DG. Together, our data reveal that lithium induces aerobic glycolysis and glutaminolysis in principal cells and that inhibition of aerobic glycolysis, but not the glutaminolysis, does not attenuate Li-NDI.
Physiological Reports | 2017
Coen C. W. G. Bongers; Mohammad Alsady; Tom Nijenhuis; Yvonne A.W. Hartman; Thijs M.H. Eijsvogels; Peter M. T. Deen; Maria T. E. Hopman
Exercise may lead to kidney injury through several mechanisms. Urinary Kidney Injury Molecule‐1 (uKIM1) and Neutrophil Gelatinase‐Associated Lipocalin (uNGAL) are known biomarkers for acute kidney injury, but their response to repetitive exercise remains unknown. We examined the effects of a single versus repetitive bouts of exercise on markers for kidney injury in a middle‐aged population. Sixty subjects (aged 29–78 years, 50% male) were included and walked 30, 40 or 50 km for three consecutive days. At baseline and after exercise day 1 and 3, a urine sample was collected to determine uNGAL and uKIM1. Furthermore, urinary cystatin C, creatinine, and osmolality were used to correct for dehydration‐related changes in urinary concentration. Baseline uNGAL was 9.2 (5.2–14.7) ng/mL and increased to 20.7 (11.0–37.2) ng/mL and 14.2(8.0–26.3) ng/mL after day 1 and day 3, respectively, (P ≤ 0.001). Baseline uKIM1 concentration was 2.6 (1.4–6.0) ng/mL and increased to 5.2 (2.4–9.1) ng/mL (P = 0.002) after day 1, whereas uKIM1 was not different from baseline at day 3 (2.9 [1.4–6.4] ng/mL (P = 0.52)). Furthermore, both uNGAL and uKIM1 levels were higher after day 1 compared to day 3 (P < 0.01). When corrected for urinary cystatin C, creatinine, and osmolality, uNGAL demonstrated a similar response compared to the uncorrected data, whereas differences in uKIM1 between baseline, day 1 and day 3 (Ptime = 0.63) were no longer observed for cystatin C and creatinine corrected data. A single bout of prolonged exercise significantly increased uNGAL concentration, whereas no changes in uKIM1 were found. Repetitive bouts of exercise show that there is no cumulative effect of kidney injury markers.
Physiological Reports | 2018
Coen C. W. G. Bongers; Mohammad Alsady; Tom Nijenhuis; Anouk D. M. Tulp; Thijs M.H. Eijsvogels; Peter M. T. Deen; Maria T. E. Hopman
Exercise and dehydration may be associated with a compromised kidney function and potential signs of kidney injury. However, the kidney responses to exercise of different durations and hypohydration levels are not yet known. Therefore, we aimed to compare the effects of acute versus prolonged exercise and dehydration on estimated glomerular filtration rate (eGFR) and kidney injury biomarkers in healthy male adults. A total of 35 subjects (23 ± 3 years) were included and invited for two study visits. Visit 1 consisted of a maximal cycling test. On Visit 2, subjects performed a submaximal exercise test at 80% of maximal heart rate until 3% hypohydration. Blood and urine samples were taken at baseline, after 30 min of exercise (acute effects; low level of hypohydration) and after 150 min of exercise or when 3% hypohydration was achieved (prolonged effects, high level of hypohydration). Urinary outcome parameters were corrected for urinary cystatin C, creatinine, and osmolality. Subjects dehydrated on average 0.6 ± 0.3% and 2.9 ± 0.7% after acute and prolonged exercise, respectively (P < 0.001). The eGFRcystatin C did not differ between baseline and acute exercise (118 ± 11 vs. 116 ± 12 mL/min/1.73 m2, P = 0.12), whereas eGFRcystatin C was significantly lower after prolonged exercise (103 ± 16 mL/min/1.73 m2, P < 0.001). We found no difference in osmolality corrected uKIM1 concentrations after acute and prolonged exercise (P > 0.05), and elevated osmolality corrected uNGAL concentrations after acute and prolonged exercise (all P‐values < 0.05). In conclusion, acute exercise did barely impact on eGFRcystatin C and kidney injury biomarkers, whereas prolonged exercise is associated with a decline in eGFRcystatin C and increased biomarkers for kidney injury.
PLOS ONE | 2017
T. de Groot; L.A.A. Damen; L. Kosse; Mohammad Alsady; R. Doty; Ruben Baumgarten; S. Sheehan; J. van der Vlag; Ron Korstanje; Peter M. T. Deen
Glycogen synthase kinase 3 (GSK3) plays an important role in the development of diabetes mellitus and renal injury. GSK3 inhibition increases glucose uptake in insulin-insensitive muscle and adipose tissue, while it reduces albuminuria and glomerulosclerosis in acute kidney injury. The effect of chronic GSK3 inhibition in diabetic nephropathy is not known. We tested the effect of lithium, the only clinical GSK3 inhibitor, on the development of diabetes mellitus and kidney injury in a mouse model of diabetic nephropathy. Twelve-week old female BTBR-ob/ob mice were treated for 12 weeks with 0, 10 and 40 mmol LiCl/kg after which the development of diabetes and diabetic nephropathy were analysed. In comparison to BTBR-WT mice, ob/ob mice demonstrated elevated bodyweight, increased blood glucose/insulin levels, urinary albumin and immunoglobulin G levels, glomerulosclerosis, reduced nephrin abundance and a damaged proximal tubule brush border. The lithium-10 and -40 diets did not affect body weight and resulted in blood lithium levels of respectively <0.25 mM and 0.48 mM. The Li-40 diet fully rescued the elevated non-fasting blood glucose levels. Importantly, glomerular filtration rate was not affected by lithium, while urine albumin and immunoglobulin G content were further elevated. While lithium did not worsen the glomerulosclerosis, proximal tubule function seemed affected by lithium, as urinary NGAL levels were significantly increased. These results demonstrate that lithium attenuates non-fasting blood glucose levels in diabetic mice, but aggravates urinary albumin and immunoglobulin G content, possibly resulting from proximal tubule dysfunction.
Diabetologia | 2017
Janna A. van Diepen; Joris H. Robben; Guido Hooiveld; Claudia Carmone; Mohammad Alsady; Lily Boutens; Melissa Bekkenkamp-Grovenstein; Anneke Hijmans; Udo Engelke; Ron A. Wevers; Mihai G. Netea; Cees J. Tack; Rinke Stienstra; Peter M. T. Deen