Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad Anwar Hossain is active.

Publication


Featured researches published by Mohammad Anwar Hossain.


Journal of Botany | 2012

Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation

Mohammad Anwar Hossain; Pukclai Piyatida; Jaime A. Teixeira da Silva; Masayuki Fujita

Heavy metal (HM) toxicity is one of the major abiotic stresses leading to hazardous effects in plants. A common consequence of HM toxicity is the excessive accumulation of reactive oxygen species (ROS) and methylglyoxal (MG), both of which can cause peroxidation of lipids, oxidation of protein, inactivation of enzymes, DNA damage and/or interact with other vital constituents of plant cells. Higher plants have evolved a sophisticated antioxidant defense system and a glyoxalase system to scavenge ROS and MG. In addition, HMs that enter the cell may be sequestered by amino acids, organic acids, glutathione (GSH), or by specific metal-binding ligands. Being a central molecule of both the antioxidant defense system and the glyoxalase system, GSH is involved in both direct and indirect control of ROS and MG and their reaction products in plant cells, thus protecting the plant from HM-induced oxidative damage. Recent plant molecular studies have shown that GSH by itself and its metabolizing enzymes—notably glutathione S-transferase, glutathione peroxidase, dehydroascorbate reductase, glutathione reductase, glyoxalase I and glyoxalase II—act additively and coordinately for efficient protection against ROS- and MG-induced damage in addition to detoxification, complexation, chelation and compartmentation of HMs. The aim of this review is to integrate a recent understanding of physiological and biochemical mechanisms of HM-induced plant stress response and tolerance based on the findings of current plant molecular biology research.


Archive | 2012

Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defense Is a Key Factor

Mirza Hasanuzzaman; Mohammad Anwar Hossain; Jaime A. Teixeira da Silva; Masayuki Fujita

In a persistently changing environment, plants are constantly challenged by various abiotic stresses such as salinity, drought, temperature extremes, heavy metal toxicity, high-light intensity, nutrient deficiency, UV-B radiation, ozone, etc. which cause substantial losses in the yield and quality of a crop. A key sign of such stresses at the molecular level is the accelerated production of reactive oxygen species (ROS) such as singlet oxygen (1O2), superoxide (O2•−), hydrogen peroxide (H2O2) and hydroxyl radicals (OH•). ROS are extremely reactive in nature because they can interact with a number of cellular molecules and metabolites, thereby leading to irreparable metabolic dysfunction and death. Plants have well-developed enzymatic and non-enzymatic scavenging pathways or detoxification systems to counter the deleterious effects of ROS that include the enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST), glutathione peroxidase (GPX) and peroxidases (POX) as well as non-enzymatic compounds such as ascorbate (AsA), glutathione (GSH), carotenoids and tocopherols. In plant cells, specific ROS-producing and scavenging systems are found in different organelles and the ROS-scavenging pathways from different cellular compartments are coordinated. Recent studies in plants have shown that relatively low levels of ROS act as signaling molecules that induce abiotic stress tolerance by regulating the expression of defense genes. Additionally, numerous results have shown that plants with higher levels of antioxidants, whether constitutive or induced, showed greater resistance to different types of environmental stresses. In this chapter we attempt to summarize recent researches on the mechanisms and possible regulatory roles of ROS in abiotic stress tolerance. Further, we discuss the progress made during the last few decades in improving the oxidative stress tolerance of plants through genetic engineering by different components of ROS detoxification systems in plants.


Frontiers in Plant Science | 2015

Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging

Mohammad Anwar Hossain; Soumen Bhattacharjee; Saed-Moucheshi Armin; Pingping Qian; Wang Xin; Hong-Yu Li; David J. Burritt; Masayuki Fujita; Lam-Son Phan Tran

Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, O2⋅-; hydroxyl radical, OH⋅ and singlet oxygen, 1O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism.


Physiology and Molecular Biology of Plants | 2010

Evidence for a role of exogenous glycinebetaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress.

Mohammad Anwar Hossain; Masayuki Fujita

In mung bean seedlings, salt stress (300 mM NaCl) caused a significant increase in reduced glutathione (GSH) content within 24 h of treatment as compared to control whereas a slight increase was observed after 48 h of treatment. Highest oxidized glutathione (GSSG) content was observed after 48 h to treatment with a concomitant decrease in glutathione redox state. Glutathione peroxidase, glutathione S-transferase, and glyoxalase II enzyme activities were significantly elevated up to 48 h, whereas glutathione reductase and glyoxalase I activities were increased only up to 24 h and then gradually decreased. Application of 15 mM proline or 15 mM glycinebetaine resulted in an increase in GSH content, maintenance of a high glutathione redox state and higher activities of glutathione peroxidase, glutathione S-transferase, glutathione reductase, glyoxalase I and glyoxalase II enzymes involved in the ROS and methylglyoxal (MG) detoxification system for up to 48 h, compared to those of the control and mostly also salt stressed plants, with a simultaneous decrease in GSSG content, H2O2 and lipid peroxidation level. The present study suggests that both proline and glycinebetaine provide a protective action against saltinduced oxidative damage by reducing H2O2 and lipid peroxidation level and by enhancing antioxidant defense and MG detoxification systems.


Biochemical and Biophysical Research Communications | 2011

Rare sugar D-psicose improves insulin sensitivity and glucose tolerance in type 2 diabetes Otsuka Long-Evans Tokushima Fatty (OLETF) rats

Mohammad Anwar Hossain; Shigeru Kitagaki; Daisuke Nakano; Akira Nishiyama; Yasunobu Funamoto; Toru Matsunaga; Ikuko Tsukamoto; Fuminori Yamaguchi; Kazuyo Kamitori; Youyi Dong; Yuko Hirata; Koji Murao; Yukiyasu Toyoda; Masaaki Tokuda

A rare sugar, D-psicose has progressively been evaluated as a unique metabolic regulator of glucose and lipid metabolism, and thus represents a promising compound for the treatment of type 2 diabetes mellitus (T2DM). The present study was undertaken to examine the underlying effector organs of D-psicose in lowering blood glucose and abdominal fat by exploiting a T2DM rat model, Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Rats were fed 5% D-psicose or 5% D-glucose supplemented in drinking water, and only water in the control for 13 weeks and the protective effects were compared. A non-diabetic Long-Evans Tokushima Otsuka (LETO), fed with water served as a counter control of OLETF. After 13 weeks feeding, D-psicose treatment significantly reduced the increase in body weight and abdominal fat mass. Oral glucose tolerance test (OGTT) showed the reduced blood glucose and insulin levels suggesting the improvement of insulin resistance in OLETF rats. Oil-red-O staining elucidated that D-psicose significantly reduced lipid accumulation in the liver. Immunohistochemical analysis showed D-psicose induced glucokinase translocation from nucleus to cytoplasm of the liver which enhances glucokinase activity and subsequent synthesis of glycogen in the liver. D-psicose also protected the pathological change of the β-cells of pancreatic islets. These data demonstrate that D-psicose controls blood glucose levels by reducing lipotoxicity in liver and by preserving pancreatic β-cell function.


Bioscience, Biotechnology, and Biochemistry | 2009

Purification of Glyoxalase I from Onion Bulbs and Molecular Cloning of Its cDNA

Mohammad Anwar Hossain; Masayuki Fujita

Glyoxalase I was highly purified from onion bulbs by DEAE-cellulose, hydroxyapatite, and S-hexylglutathione-agarose column chromatography. With 356 μmol min−1 mg−1 protein, the specific enzymatic activity of the purified enzyme is the highest reported to date in plants. The purified enzyme showed a single major band with a relative molecular mass of approximately 25,000 on SDS–PAGE. A cDNA encoding glyoxalase I was cloned and sequenced. Sequence comparison suggested that it is to be classified as a short-type glyoxalase I. The expression pattern of glyoxalase I in healthy onion plants and responses to various stresses were examined by Western blotting. Glyoxalase I exists at high concentration in roots, young bulbs, mature bulbs, and mature leaves, the highest concentration being in mature bulbs. Up-regulation of glyoxalase I and glyoxalase II enzyme activities were observed in response to various stresses, and an increase in Gly I protein was also seen by immunoblotting. Our results suggest an important role of the glyoxalase I gene in the plant abiotic stress response.


Scientific Reports | 2015

Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice

Mohammad Golam Mostofa; Mohammad Anwar Hossain; Masayuki Fujita; Lam-Son Phan Tran

In this study, we examined the possible mechanisms of trehalose (Tre) in improving copper-stress (Cu-stress) tolerance in rice seedlings. Our findings indicated that pretreatment of rice seedlings with Tre enhanced the endogenous Tre level and significantly mitigated the toxic effects of excessive Cu on photosynthesis- and plant growth-related parameters. The improved tolerance induced by Tre could be attributed to its ability to reduce Cu uptake and decrease Cu-induced oxidative damage by lowering the accumulation of reactive oxygen species (ROS) and malondialdehyde in Cu-stressed plants. Tre counteracted the Cu-induced increase in proline and glutathione content, but significantly improved ascorbic acid content and redox status. The activities of major antioxidant enzymes were largely stimulated by Tre pretreatment in rice plants exposed to excessive Cu. Additionally, increased activities of glyoxalases I and II correlated with reduced levels of methylglyoxal in Tre-pretreated Cu-stressed rice plants. These results indicate that modifying the endogenous Tre content by Tre pretreatment improved Cu tolerance in rice plants by inhibiting Cu uptake and regulating the antioxidant and glyoxalase systems, and thereby demonstrated the important role of Tre in mitigating heavy metal toxicity. Our findings provide a solid foundation for developing metal toxicity-tolerant crops by genetic engineering of Tre biosynthesis.


Journal of Plant Science and Molecular Breeding | 2013

Heat-shock positively modulates oxidative protection of salt and drought-stressed mustard (Brassica campestris L.) seedlings.

Mohammad Anwar Hossain; Mohammad Golam Mostofa; Masayuki Fujita

Abstract A large number of studies have shown the existence of cross-tolerance in plants, but the exact physiological and biochemical mechanism(s) is poorly understood. In this study, heat-shock (42 °C, 5 h) induced salinity and


Frontiers in Plant Science | 2016

Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance

Tahsina Sharmin Hoque; Mohammad Anwar Hossain; Mohammad Golam Mostofa; David J. Burritt; Masayuki Fujita; Lam-Son Phan Tran

The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses.


Frontiers in Plant Science | 2015

Jacks of metal/metalloid chelation trade in plants - an overview

Naser A. Anjum; Mirza Hasanuzzaman; Mohammad Anwar Hossain; Palaniswamy Thangavel; Aryadeep Roychoudhury; Sarvajeet Singh Gill; Vojtěch Adam; Masayuki Fujita; Rene Kizek; Armando C. Duarte; Eduarda Pereira; Iqbal Ahmad

Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loid)s (hereafter termed as “metal/s”) mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation) stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of both thiol origin (such as GSH, glutathione; PCs, phytochelatins; MTs, metallothioneins) and non-thiol origin (such as histidine, nicotianamine, organic acids). This paper presents an appraisal of recent reports on both thiol and non-thiol compounds in an effort to shed light on the significance of these compounds in plant-metal tolerance, as well as to provide scientific clues for the advancement of metal-phytoextraction strategies.

Collaboration


Dive into the Mohammad Anwar Hossain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mirza Hasanuzzaman

Sher-e-Bangla Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tahsina Sharmin Hoque

Bangladesh Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.M. Azooz

South Valley University

View shared research outputs
Top Co-Authors

Avatar

Md. Nurealam Siddiqui

Bangabandhu Sheikh Mujibur Rahman Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Md. Tofazzal Islam

Bangabandhu Sheikh Mujibur Rahman Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge