Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad Arfan Ikram is active.

Publication


Featured researches published by Mohammad Arfan Ikram.


Journal of Cerebral Blood Flow and Metabolism | 2008

Total cerebral blood flow and total brain perfusion in the general population: The Rotterdam Scan Study

Meike W. Vernooij; Aad van der Lugt; Mohammad Arfan Ikram; Piotr A. Wielopolski; Henri A. Vrooman; Albert Hofman; Gabriel P. Krestin; Monique M.B. Breteler

Reduced cerebral perfusion may contribute to the development of cerebrovascular and neurodegenerative diseases. Little is known on cerebral perfusion in the general population, as most measurement techniques are too invasive for application in large groups of healthy individuals. Total cerebral blood flow (tCBF) can be noninvasively measured by magnetic resonance imaging (MRI) but is highly correlated with brain volume. We calculated total brain perfusion by dividing tCBF by brain volume, and we investigated determinants of total brain perfusion in comparison with tCBF. Secondly, we studied whether persons with a low tCBF or low total brain perfusion have a larger volume of white matter lesions (WML). This study is based on 892 persons aged 60 to 91 years from the Rotterdam Study, a population-based cohort study. We performed two-dimensional (2D) phase-contrast MRI for tCBF measurement. Brain volume and WML volume were quantitatively assessed. Cardiovascular determinants were assessed by interview and physical examination. We assessed associations between cardiovascular determinants and flow measures with linear regression models, adjusted for age and sex. Associations between tCBF or total brain perfusion and WML volume were assessed using general linear models. We found that determinants of tCBF and total brain perfusion differed largely due to the large influence of brain volume on tCBF values. Persons with low total brain perfusion had a significantly larger WML volume compared with those with high total brain perfusion. Prospective studies are required to unravel whether hypoperfusion contributes to WML formation or that tissue damage, manifested by WML, leads to brain hypoperfusion.


Circulation-cardiovascular Genetics | 2012

Common genetic variation in the 3β-BCL11B gene desert is associated with carotid-femoral pulse wave velocity and excess cardiovascular disease risk the aortagen consortium

Gary F. Mitchell; Germaine C. Verwoert; Kirill V. Tarasov; Aaron Isaacs; Albert V. Smith; Yasmin; Ernst Rietzschel; Toshiko Tanaka; Yongmei Liu; Afshin Parsa; Samer S. Najjar; Kevin M. O'Shaughnessy; Sigurdur Sigurdsson; Marc L. De Buyzere; Martin G. Larson; Mark P.S. Sie; Jeanette S. Andrews; Wendy S. Post; Francesco Mattace-Raso; Carmel M. McEniery; Gudny Eiriksdottir; Patrick Segers; Marie Josee E. van Rijn; Timothy D. Howard; Patrick F. McArdle; Abbas Dehghan; Elizabeth S. Jewell; Stephen J. Newhouse; Sofie Bekaert; Naomi M. Hamburg

Background— Carotid-femoral pulse wave velocity (CFPWV) is a heritable measure of aortic stiffness that is strongly associated with increased risk for major cardiovascular disease events. Methods and Results— We conducted a meta-analysis of genome-wide association data in 9 community-based European ancestry cohorts consisting of 20 634 participants. Results were replicated in 2 additional European ancestry cohorts involving 5306 participants. Based on a preliminary analysis of 6 cohorts, we identified a locus on chromosome 14 in the 3′-BCL11B gene desert that is associated with CFPWV (rs7152623, minor allele frequency=0.42, &bgr;=−0.075±0.012 SD/allele, P=2.8×10−10; replication &bgr;=−0.086±0.020 SD/allele, P=1.4×10−6). Combined results for rs7152623 from 11 cohorts gave &bgr;=−0.076±0.010 SD/allele, P=3.1×10−15. The association persisted when adjusted for mean arterial pressure (&bgr;=−0.060±0.009 SD/allele, P=1.0×10−11). Results were consistent in younger (<55 years, 6 cohorts, n=13 914, &bgr;=−0.081±0.014 SD/allele, P=2.3×10−9) and older (9 cohorts, n=12 026, &bgr;=−0.061±0.014 SD/allele, P=9.4×10−6) participants. In separate meta-analyses, the locus was associated with increased risk for coronary artery disease (hazard ratio=1.05; confidence interval=1.02–1.08; P=0.0013) and heart failure (hazard ratio=1.10, CI=1.03–1.16, P=0.004). Conclusions— Common genetic variation in a locus in the BCL11B gene desert that is thought to harbor 1 or more gene enhancers is associated with higher CFPWV and increased risk for cardiovascular disease. Elucidation of the role this novel locus plays in aortic stiffness may facilitate development of therapeutic interventions that limit aortic stiffening and related cardiovascular disease events.


Gait & Posture | 2013

Gait patterns in a community-dwelling population aged 50 years and older

Vincentius J.A. Verlinden; J.N. van der Geest; Yoo Young Hoogendam; Albert Hofman; Monique M.B. Breteler; Mohammad Arfan Ikram

Poor gait is an important risk factor for falls and associated with higher morbidity and mortality. It is well established that older age is associated with worse gait, but it remains unclear at what age this association is first seen. Moreover, previous studies focused mainly on normal walking, but gait also encompasses turning and tandem walking. In a large study of community-dwelling middle-aged and elderly persons we investigated the association of age with gait, focusing on normal walking, turning and tandem walking. In 1500 persons aged 50 years and over, we measured gait using an electronic walkway. Participants performed normal walks, turning and a tandem walk. With principal components analysis of 30 variables we summarized gait into five known gait factors: Rhythm, Variability, Phases, Pace and Base of Support; and uncovered two novel gait factors: Tandem and Turning. The strongest associations with age were found for Variability (difference in Z-score -0.29 per 10 years increase (95% confidence interval: -0.34; -0.24)), Phases (-0.31 per 10 years (-0.36; -0.27)) and Tandem (-0.25 per 10 years (-0.30; -0.20)). Additionally, these factors already showed association with the youngest age groups, from 55 to 60 years of age and older. Our study shows that Variability, Phases and Tandem have the strongest association with age and are the earliest to demonstrate a poorer gait pattern with higher age. Future research should further investigate how these gait factors relate with gait-related diseases in their earliest stages.


Molecular Psychiatry | 2013

Genome-wide haplotype association study identifies the FRMD4A gene as a risk locus for Alzheimer's disease

Jean-Charles Lambert; Benjamin Grenier-Boley; Denise Harold; Diana Zelenika; Vincent Chouraki; Yoichiro Kamatani; Kristel Sleegers; Mohammad Arfan Ikram; Mikko Hiltunen; Christiane Reitz; Ignacio Mateo; T. Feulner; María J. Bullido; Daniela Galimberti; L. Concari; Victoria Alvarez; Rebecca Sims; Amy Gerrish; Jade Chapman; C. Deniz-Naranjo; Vincenzo Solfrizzi; Sandro Sorbi; Beatrice Arosio; Gianfranco Spalletta; Gabriele Siciliano; Jacques Epelbaum; Didier Hannequin; Jean-François Dartigues; Christophe Tzourio; Claudine Berr

Recently, several genome-wide association studies (GWASs) have led to the discovery of nine new loci of genetic susceptibility in Alzheimers disease (AD). However, the landscape of the AD genetic susceptibility is far away to be complete and in addition to single-SNP (single-nucleotide polymorphism) analyses as performed in conventional GWAS, complementary strategies need to be applied to overcome limitations inherent to this type of approaches. We performed a genome-wide haplotype association (GWHA) study in the EADI1 study (n=2025 AD cases and 5328 controls) by applying a sliding-windows approach. After exclusion of loci already known to be involved in AD (APOE, BIN1 and CR1), 91 regions with suggestive haplotype effects were identified. In a second step, we attempted to replicate the best suggestive haplotype associations in the GERAD1 consortium (2820 AD cases and 6356 controls) and observed that 9 of them showed nominal association. In a third step, we tested relevant haplotype associations in a combined analysis of five additional case–control studies (5093 AD cases and 4061 controls). We consistently replicated the association of a haplotype within FRMD4A on Chr.10p13 in all the data set analyzed (OR: 1.68; 95% CI: (1.43–1.96); P=1.1 × 10−10). We finally searched for association between SNPs within the FRMD4A locus and Aβ plasma concentrations in three independent non-demented populations (n=2579). We reported that polymorphisms were associated with plasma Aβ42/Aβ40 ratio (best signal, P=5.4 × 10−7). In conclusion, combining both GWHA study and a conservative three-stage replication approach, we characterised FRMD4A as a new genetic risk factor of AD.


Brain | 2011

Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease

Helena Schmidt; Marion Zeginigg; Marco Wiltgen; Paul Freudenberger; Katja Petrovic; Margherita Cavalieri; Pierre Gider; Christian Enzinger; Myriam Fornage; Stéphanie Debette; Jerome I. Rotter; Mohammad Arfan Ikram; Lenore J. Launer; Reinhold Schmidt

Cerebral small vessel disease-related brain lesions such as white matter lesions and lacunes are common findings of magnetic resonance imaging in the elderly. These lesions are thought to be major contributors to disability in old age, and risk factors that include age and hypertension have been established. The radiological, histopathologic and clinical phenotypes of age-related cerebral small vessel disease remarkably resemble autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy, which is caused by mutations in NOTCH3. We hypothesized that genetic variations in NOTCH3 also play a role in age-related cerebral small vessel disease. We directly sequenced all 33 exons, the promoter and 3′-untranslated region of NOTCH3 in 195 participants with either coalescent white matter lesions or lacunes and compared the results to 82 randomly selected participants with no focal changes on magnetic resonance images in the Austrian Stroke Prevention Study. We detected nine common and 33 rare single nucleotide polymorphisms, of which 20 were novel. All common single nucleotide polymorphisms were genotyped in the entire cohort (n = 888), and four of them, rs1043994, rs10404382, rs10423702 and rs1043997, were associated significantly with both the presence and progression of white matter lesions. The association was confined to hypertensives, a result which we replicated in the Cohorts for Heart and Ageing Research in Genomic Epidemiology Consortium on an independent sample of 4773 stroke-free hypertensive elderly individuals of European descent (P = 0.04). The 33 rare single nucleotide polymorphisms were scattered over the NOTCH3 gene with three being located in the promoter region, 24 in exons (18 non-synonymous), three in introns and three in the 3′-untranslated region. None of the single nucleotide polymorphisms affected a cysteine residue. Sorting Intolerant From Tolerant, PolyPhen2 analyses and protein structure simulation consistently predicted six of the non-synonymous single nucleotide polymorphisms (H170R, P496L, V1183M, L1518M, D1823N and V1952M) to be functional, with four being exclusively or mainly detected in subjects with severe white matter lesions. In four individuals with rare non-synonymous single nucleotide polymorphisms, we noted anterior temporal lobe hyperintensity, hyperintensity in the external capsule, lacunar infarcts or subcortical lacunar lesions. None of the observed abnormalities were specific to cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy. This is the first comprehensive study investigating (i) the frequency of NOTCH3 variations in community-dwelling elderly and (ii) their effect on cerebral small vessel disease related magnetic resonance imaging phenotypes. We show that the NOTCH3 gene is highly variable with both common and rare single nucleotide polymorphisms spreading across the gene, and that common variants at the NOTCH3 gene increase the risk of age-related white matter lesions in hypertensives. Additional investigations are required to explore the biological mechanisms underlying the observed association.


Journal of Cerebral Blood Flow and Metabolism | 2008

Total cerebral blood flow in relation to cognitive function : The Rotterdam Scan Study

Mariëlle Poels; Mohammad Arfan Ikram; Meike W. Vernooij; Gabriel P. Krestin; Albert Hofman; Wiro J Messen; Aad van der Lugt; Monique M.B. Breteler

Cerebral hypoperfusion has been associated with worse cognitive function. We investigated the association between cerebral blood flow and cognition and whether this association is independent of brain volume. In 892 participants, aged 60 to 91 years, of the population-based Rotterdam Scan study, we measured total cerebral blood flow (tCBF) and brain volume using magnetic resonance imaging. Lower tCBF was associated with worse information-processing speed, executive function, and global cognition. However, after correcting tCBF for brain volume, these associations disappeared. The association between tCBF and cognition may be mediated or confounded by brain atrophy. Future studies on tCBF should take into account brain atrophy.


Blood | 2012

Genome-wide association study for circulating levels of PAI-1 provides novel insights into its regulation.

Jie Huang; Maria Sabater-Lleal; Folkert W. Asselbergs; David Tregouet; So-Youn Shin; Jingzhong Ding; Jens Baumert; Tiphaine Oudot-Mellakh; Lasse Folkersen; Andrew D. Johnson; Nicholas L. Smith; Scott M. Williams; Mohammad Arfan Ikram; Marcus E. Kleber; Diane M. Becker; Vinh Truong; Josyf C. Mychaleckyj; Weihong Tang; Qiong Yang; Bengt Sennblad; Jason H. Moore; Frances M. K. Williams; Abbas Dehghan; Günther Silbernagel; Elisabeth M.C. Schrijvers; Shelly Smith; Mahir Karakas; Geoffrey H. Tofler; Angela Silveira; Gerjan Navis

We conducted a genome-wide association study to identify novel associations between genetic variants and circulating plasminogen activator inhibitor-1 (PAI-1) concentration, and examined functional implications of variants and genes that were discovered. A discovery meta-analysis was performed in 19 599 subjects, followed by replication analysis of genome-wide significant (P < 5 × 10(-8)) single nucleotide polymorphisms (SNPs) in 10 796 independent samples. We further examined associations with type 2 diabetes and coronary artery disease, assessed the functional significance of the SNPs for gene expression in human tissues, and conducted RNA-silencing experiments for one novel association. We confirmed the association of the 4G/5G proxy SNP rs2227631 in the promoter region of SERPINE1 (7q22.1) and discovered genome-wide significant associations at 3 additional loci: chromosome 7q22.1 close to SERPINE1 (rs6976053, discovery P = 3.4 × 10(-10)); chromosome 11p15.2 within ARNTL (rs6486122, discovery P = 3.0 × 10(-8)); and chromosome 3p25.2 within PPARG (rs11128603, discovery P = 2.9 × 10(-8)). Replication was achieved for the 7q22.1 and 11p15.2 loci. There was nominal association with type 2 diabetes and coronary artery disease at ARNTL (P < .05). Functional studies identified MUC3 as a candidate gene for the second association signal on 7q22.1. In summary, SNPs in SERPINE1 and ARNTL and an SNP associated with the expression of MUC3 were robustly associated with circulating levels of PAI-1.


Molecular Psychiatry | 2015

Genetic overlap between Alzheimer's Disease and Parkinson's Disease at the MAPT locus

Rahul S. Desikan; Andrew J. Schork; Yunpeng Wang; Aree Witoelar; Manu Sharma; Linda K. McEvoy; Dominic Holland; James B. Brewer; Chi-Hua Chen; Wes Thompson; Denise Harold; Julie Williams; Michael John Owen; Michael Conlon O'Donovan; Margaret A. Pericak-Vance; Richard Mayeux; Jonathan L. Haines; Lindsay A. Farrer; Gerard D. Schellenberg; Peter Heutink; Andrew Singleton; Alexis Brice; Nicholas W. Wood; John Hardy; Maribel Martinez; Seung-Hoan Choi; Anita L. DeStefano; Mohammad Arfan Ikram; Joshua C. Bis; Albert V. Smith

We investigated the genetic overlap between Alzheimer’s disease (AD) and Parkinson’s disease (PD). Using summary statistics (P-values) from large recent genome-wide association studies (GWAS) (total n=89 904 individuals), we sought to identify single nucleotide polymorphisms (SNPs) associating with both AD and PD. We found and replicated association of both AD and PD with the A allele of rs393152 within the extended MAPT region on chromosome 17 (meta analysis P-value across five independent AD cohorts=1.65 × 10−7). In independent datasets, we found a dose-dependent effect of the A allele of rs393152 on intra-cerebral MAPT transcript levels and volume loss within the entorhinal cortex and hippocampus. Our findings identify the tau-associated MAPT locus as a site of genetic overlap between AD and PD, and extending prior work, we show that the MAPT region increases risk of Alzheimer’s neurodegeneration.


Molecular Psychiatry | 2014

Allelic differences between Europeans and Chinese for CREB1 SNPs and their implications in gene expression regulation, hippocampal structure and function, and bipolar disorder susceptibility

Ming Li; Xiong-jian Luo; Marcella Rietschel; Cathryn M. Lewis; Manuel Mattheisen; Bertram Müller-Myhsok; Stéphane Jamain; Marion Leboyer; Mikael Landén; Paul M. Thompson; Sven Cichon; Markus M. Nöthen; Thomas G. Schulze; P. F. Sullivan; Sarah E. Bergen; Gary Donohoe; Derek W. Morris; April Hargreaves; Michael Gill; Aiden Corvin; Christina M. Hultman; Arthur W. Toga; Lei Shi; Q. Lin; Hong Shi; Lin Gan; Andreas Meyer-Lindenberg; Darina Czamara; C. Henry; B. Etain

Bipolar disorder (BD) is a polygenic disorder that shares substantial genetic risk factors with major depressive disorder (MDD). Genetic analyses have reported numerous BD susceptibility genes, while some variants, such as single-nucleotide polymorphisms (SNPs) in CACNA1C have been successfully replicated, many others have not and subsequently their effects on the intermediate phenotypes cannot be verified. Here, we studied the MDD-related gene CREB1 in a set of independent BD sample groups of European ancestry (a total of 64 888 subjects) and identified multiple SNPs significantly associated with BD (the most significant being SNP rs6785[A], P=6.32 × 10−5, odds ratio (OR)=1.090). Risk SNPs were then subjected to further analyses in healthy Europeans for intermediate phenotypes of BD, including hippocampal volume, hippocampal function and cognitive performance. Our results showed that the risk SNPs were significantly associated with hippocampal volume and hippocampal function, with the risk alleles showing a decreased hippocampal volume and diminished activation of the left hippocampus, adding further evidence for their involvement in BD susceptibility. We also found the risk SNPs were strongly associated with CREB1 expression in lymphoblastoid cells (P<0.005) and the prefrontal cortex (P<1.0 × 10−6). Remarkably, population genetic analysis indicated that CREB1 displayed striking differences in allele frequencies between continental populations, and the risk alleles were completely absent in East Asian populations. We demonstrated that the regional prevalence of the CREB1 risk alleles in Europeans is likely caused by genetic hitchhiking due to natural selection acting on a nearby gene. Our results suggest that differential population histories due to natural selection on regional populations may lead to genetic heterogeneity of susceptibility to complex diseases, such as BD, and explain inconsistencies in detecting the genetic markers of these diseases among different ethnic populations.


Neurology | 2015

Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease

Kristiina Rannikmae; Gail Davies; Pippa A. Thomson; Steve Bevan; William J. Devan; Guido J. Falcone; Matthew Traylor; Christopher D. Anderson; Thomas W Battey; Farid Radmanesh; Ranjan Deka; Jessica G. Woo; Lisa J. Martin; Jordi Jimenez-Conde; Magdy Selim; Devin L. Brown; Scott Silliman; Chelsea S. Kidwell; Joan Montaner; Carl D. Langefeld; Agnieszka Slowik; Björn M. Hansen; Arne Lindgren; James F. Meschia; Myriam Fornage; Joshua C. Bis; Stéphanie Debette; Mohammad Arfan Ikram; Will Longstreth; Reinhold Schmidt

Objectives: We hypothesized that common variants in the collagen genes COL4A1/COL4A2 are associated with sporadic forms of cerebral small vessel disease. Methods: We conducted meta-analyses of existing genotype data among individuals of European ancestry to determine associations of 1,070 common single nucleotide polymorphisms (SNPs) in the COL4A1/COL4A2 genomic region with the following: intracerebral hemorrhage and its subtypes (deep, lobar) (1,545 cases, 1,485 controls); ischemic stroke and its subtypes (cardioembolic, large vessel disease, lacunar) (12,389 cases, 62,004 controls); and white matter hyperintensities (2,733 individuals with ischemic stroke and 9,361 from population-based cohorts with brain MRI data). We calculated a statistical significance threshold that accounted for multiple testing and linkage disequilibrium between SNPs (p < 0.000084). Results: Three intronic SNPs in COL4A2 were significantly associated with deep intracerebral hemorrhage (lead SNP odds ratio [OR] 1.29, 95% confidence interval [CI] 1.14–1.46, p = 0.00003; r2 > 0.9 between SNPs). Although SNPs associated with deep intracerebral hemorrhage did not reach our significance threshold for association with lacunar ischemic stroke (lead SNP OR 1.10, 95% CI 1.03–1.18, p = 0.0073), and with white matter hyperintensity volume in symptomatic ischemic stroke patients (lead SNP OR 1.07, 95% CI 1.01–1.13, p = 0.016), the direction of association was the same. There was no convincing evidence of association with white matter hyperintensities in population-based studies or with non–small vessel disease cerebrovascular phenotypes. Conclusions: Our results indicate an association between common variation in the COL4A2 gene and symptomatic small vessel disease, particularly deep intracerebral hemorrhage. These findings merit replication studies, including in ethnic groups of non-European ancestry.

Collaboration


Dive into the Mohammad Arfan Ikram's collaboration.

Top Co-Authors

Avatar

Albert Hofman

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Meike W. Vernooij

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Wiro J. Niessen

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Aad van der Lugt

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Monique M.B. Breteler

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar

Peter J. Koudstaal

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Oscar H. Franco

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Gabriel P. Krestin

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge