Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad Bohlooly-Y is active.

Publication


Featured researches published by Mohammad Bohlooly-Y.


Nature | 2004

Premature ageing in mice expressing defective mitochondrial DNA polymerase

Aleksandra Trifunovic; Anna Wredenberg; Maria Falkenberg; Johannes N. Spelbrink; Anja T. Rovio; Carl E.G. Bruder; Mohammad Bohlooly-Y; Sebastian Gidlöf; Anders Oldfors; Rolf Wibom; Jan Törnell; Howard T. Jacobs; Nils-Göran Larsson

Point mutations and deletions of mitochondrial DNA (mtDNA) accumulate in a variety of tissues during ageing in humans, monkeys and rodents. These mutations are unevenly distributed and can accumulate clonally in certain cells, causing a mosaic pattern of respiratory chain deficiency in tissues such as heart, skeletal muscle and brain. In terms of the ageing process, their possible causative effects have been intensely debated because of their low abundance and purely correlative connection with ageing. We have now addressed this question experimentally by creating homozygous knock-in mice that express a proof-reading-deficient version of PolgA, the nucleus-encoded catalytic subunit of mtDNA polymerase. Here we show that the knock-in mice develop an mtDNA mutator phenotype with a threefold to fivefold increase in the levels of point mutations, as well as increased amounts of deleted mtDNA. This increase in somatic mtDNA mutations is associated with reduced lifespan and premature onset of ageing-related phenotypes such as weight loss, reduced subcutaneous fat, alopecia (hair loss), kyphosis (curvature of the spine), osteoporosis, anaemia, reduced fertility and heart enlargement. Our results thus provide a causative link between mtDNA mutations and ageing phenotypes in mammals.


Science | 2013

The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis

Patrick M. Smith; Michael R. Howitt; Nicolai S. Panikov; Monia Michaud; Carey Ann Gallini; Mohammad Bohlooly-Y; Jonathan N. Glickman; Wendy S. Garrett

Protecting the Guts Regulatory T cells (Tregs) in the gut are important sentinels in maintaining the peace between our gut and its trillions of resident bacteria and have been shown to be regulated by specific strains of bacteria in mouse models. Smith et al. (p. 569, published online 4 July; see the Perspective by Bollrath and Powrie) asked whether metabolite(s) generated by resident bacterial species may regulate Tregs in the gut. Indeed, short-chain fatty acids (SCFAs), bacterial fermentation products of dietary fibers produced by a range of bacteria, restored colonic Treg numbers in mice devoid of a gut microbiota and increased Treg numbers in colonized mice. The effects of SCFAs on Tregs were mediated through GPCR43, a receptor for SCFAs, which is expressed on colonic Tregs. Mice fed SCFAs were protected against experimentally induced colitis in a manner that was dependent on GPR43-expressing Tregs. Bacterial fermentation products regulate the number and function of regulatory T cells in the mouse colon. [Also see Perspective by Bollrath and Powrie] Regulatory T cells (Tregs) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate Treg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic Tregs. We determined that short-chain fatty acids, gut microbiota–derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.


PLOS Biology | 2006

Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance.

Christopher J. Lelliott; Gema Medina-Gomez; Natasa Petrovic; Adrienn Kis; Helena M. Feldmann; Mikael Bjursell; Nadeene Parker; Keira Curtis; Mark Campbell; Ping Hu; Dongfang Zhang; Sheldon E. Litwin; Vlad G. Zaha; Kimberly T Fountain; Sihem Boudina; Mercedes Jimenez-Linan; Margaret Blount; Miguel López; Aline Meirhaeghe; Mohammad Bohlooly-Y; Leonard Henry Storlien; Maria Strömstedt; Michael Snaith; Matej Orešič; E. Dale Abel; Barbara Cannon; Antonio Vidal-Puig

The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) has been implicated in important metabolic processes. A mouse lacking PGC-1β (PGC1βKO) was generated and phenotyped using physiological, molecular, and bioinformatic approaches. PGC1βKO mice are generally viable and metabolically healthy. Using systems biology, we identified a general defect in the expression of genes involved in mitochondrial function and, specifically, the electron transport chain. This defect correlated with reduced mitochondrial volume fraction in soleus muscle and heart, but not brown adipose tissue (BAT). Under ambient temperature conditions, PGC-1β ablation was partially compensated by up-regulation of PGC-1α in BAT and white adipose tissue (WAT) that lead to increased thermogenesis, reduced body weight, and reduced fat mass. Despite their decreased fat mass, PGC1βKO mice had hypertrophic adipocytes in WAT. The thermogenic role of PGC-1β was identified in thermoneutral and cold-adapted conditions by inadequate responses to norepinephrine injection. Furthermore, PGC1βKO hearts showed a blunted chronotropic response to dobutamine stimulation, and isolated soleus muscle fibres from PGC1βKO mice have impaired mitochondrial function. Lack of PGC-1β also impaired hepatic lipid metabolism in response to acute high fat dietary loads, resulting in hepatic steatosis and reduced lipoprotein-associated triglyceride and cholesterol content. Altogether, our data suggest that PGC-1β plays a general role in controlling basal mitochondrial function and also participates in tissue-specific adaptive responses during metabolic stress.


Addiction Biology | 2010

Ghrelin increases intake of rewarding food in rodents.

Emil Egecioglu; Elisabet Jerlhag; Nicolas Salomé; Karolina P. Skibicka; David Haage; Mohammad Bohlooly-Y; Daniel Andersson; Mikael Bjursell; Daniel Perrissoud; Jörgen A. Engel; Suzanne L. Dickson

We investigated whether ghrelin action at the level of the ventral tegmental area (VTA), a key node in the mesolimbic reward system, is important for the rewarding and motivational aspects of the consumption of rewarding/palatable food. Mice with a disrupted gene encoding the ghrelin receptor (GHS‐R1A) and rats treated peripherally with a GHS‐R1A antagonist both show suppressed intake of rewarding food in a free choice (chow/rewarding food) paradigm. Moreover, accumbal dopamine release induced by rewarding food was absent in GHS‐R1A knockout mice. Acute bilateral intra‐VTA administration of ghrelin increased 1‐hour consumption of rewarding food but not standard chow. In comparison with sham rats, VTA‐lesioned rats had normal intracerebroventricular ghrelin‐induced chow intake, although both intake of and time spent exploring rewarding food was decreased. Finally, the ability of rewarding food to condition a place preference was suppressed by the GHS‐R1A antagonist in rats. Our data support the hypothesis that central ghrelin signaling at the level of the VTA is important for the incentive value of rewarding food.


Diabetes | 2007

Opposing Effects of Adiponectin Receptors 1 and 2 on Energy Metabolism

Mikael Bjursell; Andrea Ahnmark; Mohammad Bohlooly-Y; Lena William-Olsson; Magdalena Rhedin; Xiao-Rong Peng; Karolina Ploj; Anna-Karin Gerdin; Gunnel Arnerup; Anders Elmgren; Anna-Lena Berg; Jan Oscarsson; Daniel Lindén

The adipocyte-derived hormone adiponectin regulates glucose and lipid metabolism and influences the risk for developing obesity, type 2 diabetes, and cardiovascular disease. Adiponectin binds to two different seven-transmembrane domain receptors termed AdipoR1 and AdipoR2. To study the physiological importance of these receptors, AdipoR1 gene knockout mice (AdipoR1−/−) and AdipoR2 gene knockout mice (AdipoR2−/−) were generated. AdipoR1−/− mice showed increased adiposity associated with decreased glucose tolerance, spontaneous locomotor activity, and energy expenditure. However, AdipoR2−/− mice were lean and resistant to high-fat diet–induced obesity associated with improved glucose tolerance and higher spontaneous locomotor activity and energy expenditure and reduced plasma cholesterol levels. Thus, AdipoR1 and AdipoR2 are clearly involved in energy metabolism but have opposing effects.


American Journal of Physiology-endocrinology and Metabolism | 2011

Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet

Mikael Bjursell; Therese Admyre; Melker Göransson; Anna Marley; David M. Smith; Jan Oscarsson; Mohammad Bohlooly-Y

Free fatty acid receptor 2 (Ffar2), also known as GPR43, is activated by short-chain fatty acids (SCFA) and expressed in intestine, adipocytes, and immune cells, suggesting involvement in lipid and immune regulation. In the present study, Ffar2-deficient mice (Ffar2-KO) were given a high-fat diet (HFD) or chow diet and studied with respect to lipid and energy metabolism. On a HFD, Ffar2-KO mice had lower body fat mass and increased lean body mass. The changed body composition was accompanied by improved glucose control and lower HOMA index, indicating improved insulin sensitivity in Ffar2-KO mice. Moreover, the Ffar2-KO mice had higher energy expenditure accompanied by higher core body temperature and increased food intake. The liver weight and content of triglycerides as well as plasma levels of cholesterol were lower in the Ffar2-KO mice fed a HFD. A histological examination unveiled decreased lipid interspersed in brown adipose tissue of the Ffar2-KO mice. Interestingly, no significant differences in white adipose tissue (WAT) cell size were observed, but significantly lower macrophage content was detected in WAT from HFD-fed Ffar2-KO compared with wild-type mice. In conclusion, Ffar2 deficiency protects from HFD-induced obesity and dyslipidemia at least partly via increased energy expenditure.


PLOS ONE | 2011

SCFAs Induce Mouse Neutrophil Chemotaxis through the GPR43 Receptor

Marco Aurélio Ramirez Vinolo; G. John Ferguson; Suhasini Kulkarni; George Damoulakis; Karen E. Anderson; Mohammad Bohlooly-Y; Len R. Stephens; Phillip T. Hawkins; Rui Curi

Short chain fatty acids (SCFAs) have recently attracted attention as potential mediators of the effects of gut microbiota on intestinal inflammation. Some of these effects have been suggested to occur through the direct actions of SCFAs on the GPR43 receptor in neutrophils, though the precise role of this receptor in neutrophil activation is still unclear. We show that mouse bone marrow derived neutrophils (BMNs) can chemotax effectively through polycarbonate filters towards a source of acetate, propionate or butyrate. Moreover, we show that BMNs move with good speed and directionality towards a source of propionate in an EZ-Taxiscan chamber coated with fibrinogen. These effects of SCFAs were mimicked by low concentrations of the synthetic GPR43 agonist phenylacetamide-1 and were abolished in GPR43−/− BMNs. SCFAs and phenylacetamide-1 also elicited GPR43-dependent activation of PKB, p38 and ERK and these responses were sensitive to pertussis toxin, indicating a role for Gi proteins. Phenylacetamide-1 also elicited rapid and transient activation of Rac1/2 GTPases and phosphorylation of ribosomal protein S6. Genetic and pharmacological intervention identified important roles for PI3Kγ, Rac2, p38 and ERK, but not mTOR, in GPR43-dependent chemotaxis. These results identify GPR43 as a bona fide chemotactic receptor for neutrophils in vitro and start to define important elements in its signal transduction pathways.


The EMBO Journal | 2016

Mitochondria are required for pro-ageing features of the senescent phenotype.

Clara Correia-Melo; Francisco D.M. Marques; Rhys Anderson; Graeme Hewitt; Rachael N. Hewitt; John J. Cole; Bernadette Carroll; Satomi Miwa; Jodie Birch; Alina Merz; Michael D. Rushton; Michelle Charles; Diana Jurk; Stephen W. G. Tait; Rafal Czapiewski; Laura C. Greaves; Glyn Nelson; Mohammad Bohlooly-Y; Sergio Rodriguez-Cuenca; Antonio Vidal-Puig; Derek A. Mann; Gabriele Saretzki; Giovanni Quarato; Douglas R. Green; Peter D. Adams; Thomas von Zglinicki; Viktor I. Korolchuk; João F. Passos

Cell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro‐inflammatory and pro‐oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood. Here, we show the critical role of mitochondria in cellular senescence. In multiple models of senescence, absence of mitochondria reduced a spectrum of senescence effectors and phenotypes while preserving ATP production via enhanced glycolysis. Global transcriptomic analysis by RNA sequencing revealed that a vast number of senescent‐associated changes are dependent on mitochondria, particularly the pro‐inflammatory phenotype. Mechanistically, we show that the ATM, Akt and mTORC1 phosphorylation cascade integrates signals from the DNA damage response (DDR) towards PGC‐1β‐dependent mitochondrial biogenesis, contributing to a ROS‐mediated activation of the DDR and cell cycle arrest. Finally, we demonstrate that the reduction in mitochondrial content in vivo, by either mTORC1 inhibition or PGC‐1β deletion, prevents senescence in the ageing mouse liver. Our results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues.


Endocrinology | 2000

Impairment of Cardiac Function and Bioenergetics in Adult Transgenic Mice Overexpressing the Bovine Growth Hormone Gene1

Entela Bollano; Elmir Omerovic; Mohammad Bohlooly-Y; V. Kujacic; Basetti Madhu; Jan Törnell; Olle Isaksson; Bassam Soussi; Wolfgang Schulze; Michael Fu; Göran Matejka; Finn Waagstein; Jörgen Isgaard

Cardiovascular abnormalities represent the major cause of death in patients with acromegaly. We evaluated cardiac structure, function, and energy status in adult transgenic mice overexpressing bovine GH (bGH) gene. Female transgenic mice expressing bGH gene (n = 11) 8 months old and aged matched controls (n = 11) were used. They were studied with two-dimensional guided M-mode and Doppler echocardiography. The animals (n = 6) for each group were examined with 31P magnetic resonance spectroscopy to determine the cardiac energy status. Transgenic mice had a significantly higher body weight (BW), 53.2+/-2.4 vs. 34.6+/-3.7 g (P < 0.0001) and hypertrophy of left ventricle (LV) compared with normal controls: LV mass/BW 5.6+/-1.6 vs. 2.7+/-0.2 mg/g, P < 0.01. Several indexes of systolic function were depressed in transgenic animals compared with controls mice such as shortening fraction 25+/-3.0% vs. 39.9+/-3.1%; ejection fraction, 57+/-9 vs. 77+/-5; mean velocity of circumferential shortening, 4.5+/-0.8 vs. 7.0+/-1.1 circ/sec, p < 0.01. Creatine phosphate-to-ATP ratio was significantly lower in bGH overexpressing mice (1.3+/-0.08 vs. 2.1+/-0.23 in controls, P < 0.05). Ultrastructural examination of the hearts from transgenic mice revealed substantial changes of mitochondria. This study provides new insight into possible mechanisms behind the deteriorating effects of long exposure to high level of GH on heart function.


Endocrinology | 2001

Vascular Function and Blood Pressure in GH Transgenic Mice

Mohammad Bohlooly-Y; L. Carlson; B. Olsson; H. Gustafsson; I. J. L. Andersson; J. Törnell; Göran Bergström

Acromegaly is associated with cardiovascular disease. We studied vascular function and mean arterial blood pressure in transgenic mice overexpressing bovine GH. Mean arterial blood pressure was measured in conscious, unrestrained male and female bovine GH and littermate control mice during normal as well as high salt intake using telemetric devices. Structure in artificially perfused maximally dilated hindquarter vascular beds and vascular reactivity and endothelial function in small mesenteric vessels were studied in female bovine GH and control mice. Mean arterial blood pressure was increased in female bovine GH transgenic (126 ± 3 mm Hg) and male bovine GH transgenic (129 ± 4 mm Hg) compared with female (109 ± 3 mm Hg, P < 0.05) and male (111 ± 3 mm Hg, P < 0.05) controls respectively. Increased salt intake had no effect on mean arterial blood pressure. Perfusion studies showed a significant decrease in the average diameter of the female bovine GH transgenic hindquarter vascular bed (P < 0.05). The res...

Collaboration


Dive into the Mohammad Bohlooly-Y's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emil Egecioglu

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Claes Ohlsson

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olle Isaksson

Sahlgrenska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge