Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohammad Dahrouj is active.

Publication


Featured researches published by Mohammad Dahrouj.


Investigative Ophthalmology & Visual Science | 2011

Human retinal pigment epithelium cells as functional models for the RPE in vivo.

Zsolt Ablonczy; Mohammad Dahrouj; Peter H. Tang; Yueying Liu; Kumar Sambamurti; Alan D. Marmorstein; Craig E. Crosson

PURPOSE The two most commonly used in vitro models of the retinal pigment epithelium (RPE) are fetal human RPE (fhRPE) and ARPE-19 cells; however, studies of their barrier properties have produced contradictory results. To compare their utility as RPE models, their morphologic and functional characteristics were analyzed. METHODS Monolayers of both cell types were grown on permeable membrane filters. Barrier function and cellular morphology were assessed by transepithelial resistance (TER) measurements and immunohistochemistry. Protein expression was evaluated by immunoblotting and ELISA assays, and retinoid metabolism characterized by HPLC. RESULTS Both cultures developed tight junctions. However, only the fhRPE cells were pigmented, uniform in size and shape, expressed high levels of RPE markers, metabolized all-trans retinal, and developed high TER (>400 Ωcm(2)). The net secretion of pigment-epithelium-derived factor (PEDF) was directed apically in both cultures, but fhRPE cells exhibited secretion rates a thousand-fold greater than in ARPE-19 cells. The net secretion of vascular endothelial growth factor (VEGF) was significantly higher in fhRPE cultures and the direction of this secretion was basolateral; while net secretion was apical in ARPE-19 cells. In fresh media, VEGF-E reduced TER in both cultures; however, in conditioned media fhRPE cells did not respond to VEGF-E administration, but retreatment of the conditioned media with anti-PEDF antibodies allowed fhRPE cells to fully respond to VEGF-E. CONCLUSIONS Properties of fhRPE cells align with a functionally normal RPE in vivo, while ARPE-19 cells resemble a pathologic or aged RPE. These results suggest a utility for both cell types in understanding distinct, particular aspects of RPE function.


Investigative Ophthalmology & Visual Science | 2013

Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium.

Zsolt Ablonczy; Daniel Higbee; David M. Anderson; Mohammad Dahrouj; Angus C. Grey; Danielle B. Gutierrez; Yiannis Koutalos; Kevin L. Schey; Anne Hanneken; Rosalie K. Crouch

PURPOSE The accumulation of lipofuscin in the RPE is a hallmark of aging in the eye. The best characterized component of lipofuscin is A2E, a bis-retinoid byproduct of the normal retinoid visual cycle, which exhibits a broad spectrum of cytotoxic effects in vitro. The purpose of our study was to correlate the distribution of lipofuscin and A2E across the human RPE. METHODS Lipofuscin fluorescence was imaged in flat-mounted RPE from human donors of various ages. The spatial distributions of A2E and its oxides were determined using matrix-assisted laser desorption-ionization imaging mass spectrometry (MALDI-IMS) on flat-mounted RPE tissue sections and retinal cross-sections. RESULTS Our data support the clinical observations of strong RPE fluorescence, increasing with age, in the central area of the RPE. However, there was no correlation between the distribution of A2E and lipofuscin, as the levels of A2E were highest in the far periphery and decreased toward the central region. High-resolution MALDI-IMS of retinal cross-sections confirmed the A2E localization data obtained in RPE flat-mounts. Singly- and doubly-oxidized A2E had distributions similar to A2E, but represented <10% of the A2E levels. CONCLUSIONS This report to our knowledge is the first description of the spatial distribution of A2E in the human RPE by imaging mass spectrometry. These data demonstrate that the accumulation of A2E is not responsible for the increase in lipofuscin fluorescence observed in the central RPE with aging.


Investigative Ophthalmology & Visual Science | 2013

Inhibition of HDAC2 Protects the Retina From Ischemic Injury

Jie Fan; Oday Alsarraf; Mohammad Dahrouj; Kenneth A. Platt; C. James Chou; Dennis S. Rice; Craig E. Crosson

PURPOSE Protein acetylation is an essential mechanism in regulating transcriptional and inflammatory events. Studies have shown that nonselective histone deacetylase (HDAC) inhibitors can protect the retina from ischemic injury in rats. However, the role of specific HDAC isoforms in retinal degenerative processes remains obscure. The purpose of this study was to investigate the role of HDAC2 isoform in a mouse model of ischemic retinal injury. METHODS Localization of HDAC2 in mice retinas was evaluated by immunohistochemical analyses. To investigate whether selective reduction in HDAC2 activity can protect the retina from ischemic injury, Hdac2⁺/⁻ mice were utilized. Electroretinographic (ERG) and morphometric analyses were used to assess retinal function and morphology. RESULTS Our results demonstrated that HDAC2 is primarily localized in nuclei in inner nuclear and retinal ganglion cell layers, and HDAC2 activity accounted for approximately 35% of the total activities of HDAC1, 2, 3, and 6 in the retina. In wild-type mice, ERG a- and b-waves from ischemic eyes were significantly reduced when compared to pre-ischemia baseline values. Morphometric examination of these eyes revealed significant degeneration of inner retinal layers. In Hdac2⁺/⁻ mice, ERG a- and b-waves from ischemic eyes were significantly greater than those measured in ischemic eyes from wild-type mice. Morphologic measurements demonstrated that Hdac2⁺/⁻ mice exhibit significantly less retinal degeneration than wild-type mice. CONCLUSIONS This study demonstrated that suppressing HDAC2 expression can effectively reduce ischemic retinal injury. Our results support the idea that the development of selective HDAC2 inhibitors may provide an efficacious treatment for ischemic retinal injury.


Experimental Eye Research | 2015

Receptor mediated disruption of retinal pigment epithelium function in acute glycated-albumin exposure.

Mohammad Dahrouj; Danielle Desjardins; Yueying Liu; Craig E. Crosson; Zsolt Ablonczy

Diabetic macular edema (DME) is a major cause of visual impairment. Although DME is generally believed to be a microvascular disease, dysfunction of the retinal pigment epithelium (RPE) can also contribute to its development. Advanced glycation end-products (AGE) are thought to be one of the key factors involved in the pathogenesis of diabetes in the eye, and we have previously demonstrated a rapid breakdown of RPE function following glycated-albumin (Glyc-alb, a common AGE mimetic) administration in monolayer cultures of fetal human RPE cells. Here we present new evidence that this response is attributed to apically oriented AGE receptors (RAGE). Moreover, time-lapse optical coherence tomography in Dutch-belted rabbits 48 h post intravitreal Glyc-alb injections demonstrated a significant decrease in RPE-mediated fluid resorption in vivo. In both the animal and tissue culture models, the response to Glyc-alb was blocked by the relatively selective RAGE antagonist, FPS-ZM1 and was also inhibited by ZM323881, a relatively selective vascular endothelial growth factor receptor 2 (VEGF-R2) antagonist. Our data establish that the Glyc-alb-induced breakdown of RPE function is mediated via specific RAGE and VEGF-R2 signaling both in vitro and in vivo. These results are consistent with the notion that the RPE is a key player in the pathogenesis of DME.


Investigative Ophthalmology & Visual Science | 2014

Vascular Endothelial Growth Factor Modulates the Function of the Retinal Pigment Epithelium In Vivo

Mohammad Dahrouj; Oday Alsarraf; Jake C. McMillin; Yueying Liu; Craig E. Crosson; Zsolt Ablonczy

PURPOSE Retinal edema, the accumulation of extracellular fluid in the retina is usually attributed to inner blood retina barrier (BRB) leakage. Vascular endothelial growth factor plays an important role in this process. The effects of VEGF on the outer BRB, the RPE, however, have received limited attention. Here, we present a methodology to assess how VEGF modulates the integrity of the RPE barrier in vivo. METHODS Control subretinal blebs (1-5 μL) and blebs containing VEGF (1-100 μg/mL), placental growth factor (PlGF; 100 μg/mL), or albumin (100-1000 μg/mL) were injected into New Zealand White or Dutch Belted rabbits with IOP maintained at 10, 15, or 20 mm Hg. One-hour intravitreal pretreatment with ZM323881 (10 μM/L) was used to inhibit the VEGF response. Fluid resorption was followed by optical coherence tomography for 1 hour. Retinal pigment epithelium leakage was assessed by fluorescein angiography. RESULTS Increasing IOP resulted in an elevated rate of bleb resorption, while increasing albumin concentration in the bleb decreased the rate of resorption. Vascular endothelial growth factor, but not PlGF, caused a significant, concentration-dependent decrease in the rate of fluid resorption, which was reversed by ZM323881. Compared with albumin-filled blebs, VEGF-filled blebs showed accelerated early-phase leakage from the choroid. CONCLUSIONS Consistent with a localized modulation of RPE function, VEGF induced a significant reduction in fluid resorption and an increase in hydraulic conductivity. Our results establish VEGF as a major cytokine regulating RPE barrier properties in vivo and indicate that the RPE is a principal factor in the pathogenesis of retinal edema.


Investigative Ophthalmology & Visual Science | 2016

Progressive Early Breakdown of Retinal Pigment Epithelium Function in Hyperglycemic Rats.

Danielle Desjardins; Phil W. Yates; Mohammad Dahrouj; Yueying Liu; Craig E. Crosson; Zsolt Ablonczy

Purpose Diabetic macular edema (DME), an accumulation of fluid in the subretinal space, is a significant cause of vision loss. The impact of diabetes on the breakdown of the inner blood–retina barrier (BRB) is an established event that leads to DME. However, the role of the outer BRB in ocular diabetes has received limited attention. We present evidence that the breakdown of normal RPE function in hyperglycemia facilitates conditions conducive to DME pathogenesis. Methods Brown Norway rats (130–150 g) were injected intraperitoneally with streptozotocin (STZ; 60 mg/kg) to induce hyperglycemia. After 4 weeks, Evans blue (EB) dye was injected intravenously to determine whether there was leakage of albumin into the retina. Subretinal saline blebs (0.5–1 μL) were placed 4 and 9 weeks after STZ injection, and time-lapse optical coherence tomography tracked the resorption rate. In a subset of rats, intravitreal bevacizumab, a humanized monoclonal antibody targeted to VEGF, was given at 5 weeks and resorption was measured at 9 weeks. Results The ability of the RPE to transport fluid was reduced significantly after 4 and 9 weeks of hyperglycemia with a reduction of over 67% at 9 weeks. No EB dye leakage from inner retinal vessels was measured in hyperglycemic animals compared to control. The intravitreal administration of bevacizumab at week 5 significantly increased the rate of fluid transport in rats subjected to hyperglycemia for 9 weeks. Conclusions These results demonstrate that chronic hyperglycemia altered RPE fluid transport, in part dependent on the actions of VEGF. These results support the idea that RPE dysfunction is an early event associated with hyperglycemia that contributes to fluid accumulation in DME.


Journal of Pharmacology and Experimental Therapeutics | 2013

C-type natriuretic peptide protects the retinal pigment epithelium against advanced glycation end-product-induced barrier dysfunction

Mohammad Dahrouj; Oday Alsarraf; Yueying Liu; Craig E. Crosson; Zsolt Ablonczy

In diabetic retinopathy, vision loss is usually secondary to macular edema, which is thought to depend on the functional integrity of the blood-retina barrier. The levels of advanced glycation end products in the vitreous correlate with the progression of diabetic retinopathy. Natriuretic peptides (NP) are expressed in the eye and their receptors are present in the retinal pigment epithelium (RPE). Here, we investigated the effect of glycated-albumin (Glyc-alb), an advanced glycation end product model, on RPE-barrier function and the ability of NP to suppress this response. Transepithelial electrical resistance (TEER) measurements were used to assess the barrier function of ARPE-19 and human fetal RPE (hfRPE) monolayers. The monolayers were treated with 0.1–100 μg/ml Glyc-alb in the absence or presence of 1 pM to 100 nM apical atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), or C-type natriuretic peptide (CNP). Glyc-alb induced a significant reduction in TEER within 2 hours. This response was concentration-dependent (EC50= 2.3 μg/ml) with a maximal reduction of 40 ± 2% for ARPE-19 and 27 ± 7% for hfRPE at 100 μg/ml 6 hours post-treatment. One hour pretreatment with ANP, BNP, or CNP blocked the reduction in TEER induced by Glyc-alb (100 μg/ml). The suppression of the Glyc-alb response by NP was dependent on the generation of cyclic guanosine monophosphate and exhibited a rank order of agonist potency consistent with the activation of natriuretic-peptide-receptor-2 (NPR2) subtype (CNP >> BNP ≥ ANP). Our data demonstrate that Glyc-alb is effective in reducing RPE-barrier function, and this response is suppressed by NP. Moreover, these studies support the idea that NPR2 agonists can be potential candidates for treating retinal edema in diabetic patients.


Advances in Experimental Medicine and Biology | 2012

Sublytic Membrane-Attack-Complex Activation and VEGF Secretion in Retinal Pigment Epithelial Cells

Kannan Kunchithapautham; Mausumi Bandyopadhyay; Mohammad Dahrouj; Joshua M. Thurman; Bärbel Rohrer

Uncontrolled activation of the alternative complement pathway and secretion of vascular endothelial growth factor (VEGF) are thought to be associated with age-related macular degeneration (AMD). Previously, we have shown that in RPE monolayers, oxidative stress induced by H2O2 exposure reduced complement inhibition on the cell surface. The resulting increased level of sublytic complement activation resulted in VEGF release, which disrupted the barrier facility of these cells as determined by transepithelial resistance (TER) measurements. Here, we have asked whether other environmental factors known to be associated with AMD, such as A2E, iron, and smoking, similarly sensitize the RPE to complement attack. Exposure of RPE monolayers with stable TER to A2E, ferric ammonium citrate (FAC), and smoke-extract at pathological concentrations resulted in significant increase in oxidative stress as determined by reactive oxygen species and superoxide measurements. However, an additional challenge with normal human serum only resulted in a decrease in TER in H2O2-exposed cells as reported previously, whereas A2E-, FAC-, and smoke-extract-treated cells were unaffected. Effects on TER were directly correlated with the release of VEGF. Taken together, identifying which AMD-associated stimuli result in sublytic MAC induction of VEGF secretion might offer novel opportunities to selectively inhibit pathological VEGF release.


Investigative Ophthalmology & Visual Science | 2014

Acetylation preserves retinal ganglion cell structure and function in a chronic model of ocular hypertension.

Oday Alsarraf; Jie Fan; Mohammad Dahrouj; C. James Chou; Phillip W. Yates; Craig E. Crosson

PURPOSE The current studies investigate if the histone deacetylase (HDAC) inhibitor, valproic acid (VPA), can limit retinal ganglion cell (RGC) degeneration in an ocular-hypertensive rat model. METHODS Intraocular pressure (IOP) was elevated unilaterally in Brown Norway rats by hypertonic saline injection. Rats received either vehicle or VPA (100 mg/kg) treatment for 28 days. Retinal ganglion cell function and number were assessed by pattern electroretinogram (pERG) and retrograde FluoroGold labeling. Western blotting and a fluorescence assay were used for determination of histone H3 acetylation and HDAC activity, respectively, at 3-day, 1-week, and 2-week time points. RESULTS Hypertonic saline injections increased IOPs by 7 to 14 mm Hg. In vehicle-treated animals, ocular hypertension resulted in a 29.1% and 39.4% decrease in pERG amplitudes at 2 and 4 weeks, respectively, and a 42.9% decrease in mean RGC density at 4 weeks. In comparison, VPA treatment yielded significant amplitude preservation at 2 and 4 weeks and showed significant RGC density preservation at 4 weeks. No significant difference in RGC densities or IOPs was measured between control eyes of vehicle- and VPA-treated rats. In ocular-hypertensive eyes, class I HDAC activity was significantly elevated within 1 week (13.3 ± 2.2%) and histone H3 acetylation was significantly reduced within 2 weeks following the induction of ocular hypertension. CONCLUSIONS Increase in HDAC activity is a relatively early retinal event induced by elevated IOP, and suppressing HDAC activity can protect RGCs from ocular-hypertensive stress. Together these data provide a basis for developing HDAC inhibitors for the treatment of optic neuropathies.


Experimental Eye Research | 2014

Acetylation: A lysine modification with neuroprotective effects in ischemic retinal degeneration

Oday Alsarraf; Jie Fan; Mohammad Dahrouj; C. James Chou; Donald R. Menick; Craig E. Crosson

Collaboration


Dive into the Mohammad Dahrouj's collaboration.

Top Co-Authors

Avatar

Craig E. Crosson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Zsolt Ablonczy

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Yueying Liu

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Danielle Desjardins

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Kumar Sambamurti

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Oday Alsarraf

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

C. James Chou

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jie Fan

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jake C. McMillin

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Peter H. Tang

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge